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Resumo

As Redes Convolucionais tornaram-se a solução mais utilizada para resolver problemas de Visão por

Computador. Graças a avanços em desempenho computacional e ao desenvolvimento de bibliotecas

abertas de grande qualidade para aprendizagem profunda, automatizar uma tarefa de visão simples

envolve apenas construir um conjunto de dados representativo, que simula as condições nas quais a

rede será aplicada, e treinar uma rede adequada nesse conjunto de dados, com algumas considerações

adicionais para evitar sobre-adaptar ou sub-adaptar a rede ao conjunto de dados.

Este problema torna-se mais complexo quando o conjunto de dados de treino não representa in-

teiramente o ambiente no qual a rede deverá funcionar. Por exemplo, uma rede que é treinada num

ambiente simulado poderá não funcionar bem quando é testada num ambiente real. Esta situação re-

quer redes que sejam capazes de generalizar de forma mais profunda. As redes deverão ser robustas

a alterações no seu ambiente. No caso de uma tarefa de visão, a rede deverá reconhecer a forma dos

objetos em vez de reconhecer apenas as suas texturas, para poder reconhecer objetos em diferentes

ambientes. Nesta tese iremos explorar o funcionamento das Redes Convolucionais, os detalhes deste

problema de generalização, diferentes estratégias para o abordar, e propomos um novo método de

texturização aleatória de imagens, que reduz a dependência das redes em texturas e aumenta a sua

sensibilidade à forma dos objetos.

Palavras-chave: Visão por Computador, Aprendizagem Profunda, Redes Convolucionais,

Generalização de Domı́nio, Viés de Texturas
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Abstract

Convolutional neural networks have become the de-facto standard solution for most computer vision

problems. Thanks to advances in computer performance and the development of open high-end deep

learning libraries, automating a simple vision task only involves gathering a reasonable dataset, that

mimics the conditions in which the network will be deployed, and training a suitable network on that

dataset, with some extra considerations and tuning to avoid underfitting or overfitting the dataset.

This problem becomes more difficult when the dataset on which the network is trained on does not

fully represent the scenarios on which the network will be immersed. For example, a network that is

trained in a simulated environment may not perform well when it is tested in a real environment, due

to the differences between the simulated and real environments. This situation requires networks that

are able to generalize at a deeper level. The networks must be robust to changes in their environment.

Therefore, in the case of a vision task, they must rely mostly on high-level object shapes rather than

low-level image textures to correctly identify objects across environments. Throughout this thesis we

will explore the inner workings of convolutional neural networks, the intricacies of this generalization

problem, several strategies to tackle it and propose a novel randomized image texturization method that

can make make networks rely less on texture and more on the shape of objects.

Keywords: Computer Vision, Deep Learning, Convolutional Neural Networks, Domain Gener-

alization, Texture Bias
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Chapter 1

Introduction

The usage of machine learning models in the critical systems of vehicles and aircraft has long been

desired to automate their functions. Good examples include the increased interest in autonomous driving

[1] and the recent demonstration of full autonomous flights by an Airbus commercial aircraft [2]. One of

the key steps to the deployment of a good computer vision solution, besides the choice of a trustworthy

algorithm, is the construction of a large and representative dataset on which the algorithms can be

successfully trained. This involves the manual annotation of thousands of images which can take more

than one hour each, depending on the task, to achieve good results.

One possible solution to this problem would be the training of such algorithms in a simulated environ-

ment, like a driving simulator or a video game, where different objects in a scene can be automatically

annotated, thus saving thousands of hours of human labor and allowing the creation of diversified train-

ing scenarios. In the case of autonomous driving, the points of failure are usually situations that are very

rare and don’t appear often enough in the training dataset, like overturned vehicles, pedestrians in un-

usual locations, vehicles transporting other vehicles and occluded signs or lines. Training on a simulator

would allow the algorithm to learn in many different and rare scenarios that it would not observe often

enough on real training images, thus guaranteeing more control over those situations. Furthermore,

reinforcement learning algorithms typically perform better when the state vector between the perception

and planning modules is learned rather than human designed, meaning that we should let the algorithm

decide which visual features it considers more important to the task that is being automated. This may

only be possible to achieve if the algorithms are trained in a simulator.

Although the Convolutional Neural Network (CNN) architecture offers outstanding performance in

image processing tasks, it does so only when the images on which it is tested on come from the same

domain as the ones that were used to train the algorithm. This is the problem of out-of-domain (OOD)

performance degradation. A domain shift may include simple transformations like a colour shift, noisy

images, camera artifacts, camera position, image scale, or more complex differences like the fact that

an image of an object can be a photograph, a drawing, a painting or the result of a render from a simu-

lation. Objects in different domains can also have different textures, lighting and light reflection/diffusion

properties. Any of these domain shifts can catastrophically affect the performance of CNNs if it is not
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accounted for. Accounting for domain shifts is not always simple and the problem of domain adapta-

tion/generalization remains an open problem with no algorithm being capable of achieving human-level

generalization to new unseen domains and with any unknown domain shift.

Despite the fact that computer graphics have tremendously evolved over the year, there will always be

a domain gap between a simulated environment and the real images captured by cameras. Style transfer

techniques have tried to close this gap by transforming the simulated images such that they look as

similar to the real world as possible but artifacts still exist, which can interfere with the task performance.

Furthermore, real world images themselves can exist in multiple domains, such as different times of the

day and lighting conditions, different weather and different camera defects. Training a computer vision

algorithm in a simulator would have to yield good performance for any possible domain, thus having

good generalization properties. The question then becomes - How to train a CNN on a given domain in

a way that it can generalize to any other domain?

1.1 Motivation

The usage of machine learning models in the critical systems of vehicles and aircraft has long been

desired to automate their functions. Good examples include the increased interest in autonomous driving

[1] and the recent demonstration of full autonomous flights by an Airbus commercial aircraft [2]. One of

the key steps to the deployment of a good computer vision solution, besides the choice of a trustworthy

algorithm, is the construction of a large and representative dataset on which the algorithms can be

successfully trained. This involves the manual annotation of thousands of images which can take more

than one hour each, depending on the task, to achieve good results.

One possible solution to this problem would be the training of such algorithms in a simulated environ-

ment, like a driving simulator or a video game, where different objects in a scene can be automatically

annotated, thus saving thousands of hours of human labor and allowing the creation of diversified train-

ing scenarios. In the case of autonomous driving, the points of failure are usually situations that are very

rare and don’t appear often enough in the training dataset, like overturned vehicles, pedestrians in un-

usual locations, vehicles transporting other vehicles and occluded signs or lines. Training on a simulator

would allow the algorithm to learn in many different and rare scenarios that it would not observe often

enough on real training images, thus guaranteeing more control over those situations. Furthermore,

reinforcement learning algorithms typically perform better when the state vector between the perception

and planning modules is learned rather than human designed, meaning that we should let the algorithm

decide which visual features it considers more important to the task that is being automated. This may

only be possible to achieve if the algorithms are trained in a simulator.

Although the Convolutional Neural Network (CNN) architecture offers outstanding performance in

image processing tasks, it does so only when the images on which it is tested on come from the same

domain as the ones that were used to train the algorithm. This is the problem of out-of-domain (OOD)

performance degradation. A domain shift may include simple transformations like a colour shift, noisy

images, camera artifacts, camera position, image scale, or more complex differences like the fact that
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an image of an object can be a photograph, a drawing, a painting or the result of a render from a simu-

lation. Objects in different domains can also have different textures, lighting and light reflection/diffusion

properties. Any of these domain shifts can catastrophically affect the performance of CNNs if it is not

accounted for. Accounting for domain shifts is not always simple and the problem of domain adapta-

tion/generalization remains an open problem with no algorithm being capable of achieving human-level

generalization to new unseen domains and with any unknown domain shift.

Despite the fact that computer graphics have tremendously evolved over the year, there will always be

a domain gap between a simulated environment and the real images captured by cameras. Style transfer

techniques have tried to close this gap by transforming the simulated images such that they look as

similar to the real world as possible but artifacts still exist, which can interfere with the task performance.

Furthermore, real world images themselves can exist in multiple domains, such as different times of the

day and lighting conditions, different weather and different camera defects. Training a computer vision

algorithm in a simulator would have to yield good performance for any possible domain, thus having

good generalization properties. The question then becomes - How to train a CNN on a given domain in

a way that it can generalize to any other domain?

1.2 Topic Overview

The previously posed question is the gist of the Domain Generalization (DG) problem. This line of

research deals with the problem of training machine learning (ML) algorithms that can work in novel,

unseen domains. This problem seems trivial to human beings because we evolved to be able to do this

subconsciously, filtering out irrelevant information with very complex adapting recurrent visual systems,

using feed-forward, horizontal and feed-back connections in the visual cortex [3]. On the contrary, ML

algorithms are usually simple feed-forward algorithms that learn or fit a particular distribution of data and

their performance can be very sensible to shifts in this distribution.

The Domain Generalization problem is part of a broader set of generalization problems that also

includes Domain Adaptation (DA). While DG tries to generalize to new unseen domains, DA deals with

a problem of learning a task on particular distribution of data and while adapting that knowledge to

a second accessible distribution, where typically the second distribution does not have supervision.

DA algorithms can adapt/generalize using multiple distributions, therefore a considerable number of

DG algorithms are imported directly from DA research. Therefore, to establish a strong base on the

generalization problem, different DA and DG algorithms will be covered with appropriate detail in section

2 of this thesis.

The problem of domain shifts is usually tackled in the context of image processing, where distributions

over the space of all possible images can be subject to a huge variety of transformations and domain

shifts that occur naturally or are the results of different training and testing environments. In the context

of CNNs, this failure to generalize is explained by their often strong texture-bias. When CNNs heavily rely

on textural cues, instead of object shapes, to perform their tasks, they will fail to generalize to different

domains where the low-level texture statistics might be different. The origins and possible solutions to
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the texture-bias problem of CNNs will be covered in section 2.

To understand how CNNs capture and process these image distributions, this thesis will explore the

most basic mechanisms that make up CNNs and how they are used together. Furthermore, different

CNN types and architectures will be covered such that a strong theoretical basis can be established

before tacking the DG, DA and texture-bias problems. In parallel, the different applications of CNNs to

real-world tasks, such as image classification, object detection and image segmentation, will be exposed

in a comprehensive manner. The generalization algorithms are commonly tested in these tasks, with

multiple datasets from different domains, to assess how well the networks are able to generalize.

1.3 Objectives

This thesis has two main objectives:

• To offer the reader an introduction to the topic of computer vision using CNNs. The possible

applications, the different architectures and the challenges that it faces in terms of generalization

performance.

• To showcase different attempts to randomly alter the low-level statistics of images and finally pro-

pose a novel randomized texturization method that decreases the texture-bias of CNNs with only

a small computational overhead compared to other methods.

1.4 Thesis Outline

We start by outlining the Background section, based mostly on bibliographic research:

In section 2.2 we will start by understanding exactly what a Convolutional Neural Network (CNN) is,

its building blocks, what mathematical operations it performs, how it can process images and how it is

trained, in the context of image classification.

Section 2.3 will cover the most common and representative CNN architectures, VGGs and ResNets,

that are widely used in research because they are the basis of most subsequent architectures.

Section 2.4 will explore the many possible applications of CNNs, from Semantic Segmentation and

Object Detection to Image Generation and Style Transferring techniques.

Section 2.5 will introduce the phenomenon of texture-bias, which is present across different CNN

architectures and may be seen as a form of domain overfitting.

Section 2.6 will offer an extensive overview of the research line that deals with the generalization

performance of CNNs. Many algorithms will be showcased, from the most commonly used to the most

recent (some of them from late 2020).

The following sections include mostly original work, which is based on previous techniques but seeks

to improve them:

In section 3.1 we explore a first approach to randomized image transformations based on style trans-

ferring techniques. The methods are extended to be more general and to learn without a style dataset.
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In section 3.2 we propose and formalize and novel randomized texturing method based on an auto-

encoder architecture. This method transforms the images in their latent space, producing spatially co-

herent textures. It is shown that, with certain latent transformations, this method can produce all possible

spatial coherent textural variations of an image in pixel space. Further, this method is far less computa-

tionally intensive than style transferring methods.

Chapter 4 covers different experiments that were performed with the novel technique:

In section 4.1 we measure the effect of randomly texturing images during training on the texture-bias

of a CNN architecture during testing.

In section 4.2 we assess the generalization performance in a semantic segmentation task when

using randomly textured images during training.

In section 4.3 we evaluate the generalization performance in an object detection task when using

randomly textured images during training.

Finally, chapter 5 concludes this thesis and exposes future lines of research that might better solve

this problem.

1.5 Thesis Context

This thesis was the final result of my end-of-studies internship at the Institute de Recherche Tech-

nologique (IRT) Saint Exupéry in Toulouse, France. This institute is part of the Aerospace Valley and

forms strong partnerships with industry leaders such as Airbus, Thales, Safran, Zodiac, Ariane Group,

Collins Aerospace, Liebherr, Stelia, Latécoère, Daher, and many others. The institute is funded 50%

by the state and 50% by the private sector and its main purpose is to mature new technologies in the

aerospace sector into industry-ready maturity levels. In this institute, partners from academia and indus-

try work together to develop solutions from the research phase up to the industry-ready implementation,

thus accelerating the adoption of new technologies by the industry.

I did my internship with the DEEL (DEpendable and Explainable Learning) team at the IRT Saint

Exupéry. This team is comprised of members of academia with a strong mathematical background

in statistics, representation learning and computer science, as well as members from the industry, with

expertise in machine learning and artificial intelligence. Together the team researches novel methods for

explainable artificial intelligence (XAI), dependable and certifiable algorithms, including formal methods

of certification, the improvement of AI robustness, the development of fair AI, the learning of disentangled

representations, the applications of binary networks and k-lipschitz networks, and other more specific

applications. I worked within the context of improving the robustness of AI vision algorithms, in particular

the robustness when generalizing across domains.
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Chapter 2

Background

The backbone of many modern computer vision and image processing algorithms are Convolutional

Neural Networks. This family of architectures mimics the visual system of animals [4] and humans [5–8],

where low-level features like points, edges and textures are combined to form mid-level features like

shapes, curves and more complex textures. These mid-level features are then combined to form high-

level features like faces, bodies, animals, objects, locations and backgrounds (see Figure 2.1). Finally

the high level features are used to perform various tasks such as object classification, detection or image

segmentation.

Figure 2.1: Feature Hierarchy leaned by GoogLeNet on the ImageNet dataset.

Gradient based CNNs were first applied to image processing by LeCun et al. [9] in 1989 for digit

recognition and considerably outperformed any previous technique. They were later used for tasks such

as document recognition in 1998 [10].

It wasn’t until the increase in computational power, its parallelization using Graphical Processing

Units (GPUs) and the construction of large labeled image datasets such as ImageNet [11], that a break-

through occurred in natural image processing. In 2012 Krizhevsky et al. [12] introduced AlexNet, a deep

CNN capable of classifying images into 1000 different classes with a high degree of accuracy. Alexnet

was trained by leveraging the parallel processing power of Graphical Processing Units to achieve a great

increase in model capacity.

From 2012 onwards, novel architectures established new state-of-the-art performances every year,

such as deeper VGG (Visual Geometry Group) networks [13], parallel reduction and multi-scale convo-
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lutions in inception networks [14], residual networks [15], which surpassed human-level performance,

densely connected convolutional networks [16] and squeeze networks with channel-wise re-calibration

[17]. The focus slowly shifted from achieving the best performance to achieving a good compromise

between performance and a small model size, with less parameters, allowing CNNs to be deployed in

mobile devices. With this objective, different architectures were introduced, using depth-wise separa-

ble convolutions [18], network pruning/slimming [19] and optimal scaling of network depth, width and

resolution [20].

Besides image classification, convolutional architectures also found application in algorithms for ob-

ject detection [21–24] and semantic segmentation [25–29], in (Variational) Auto-Encoders [30–33] and

in Generative Adversarial Networks [34–38]. These algorithms can then be used in many types of down-

stream tasks such as self-driving [39, 40], robotics [41, 42], visual tracking [43, 44], image captioning

[45, 46], image super-resolution [47], image colorization [48], image style transfer [49] and deep dream-

ing [50].

In this section we shall explore Convolutional Neural Networks, mainly focusing in their internal func-

tioning and generalization properties.

2.1 Multi-Layer Perceptron

Before tackling Convolutional Neural Networks we shall first explore the Perceptron and the Multi Layer

Perceptron, which are the basis of most neural network architectures, including CNNs.

A Perceptron (commonly called Neuron) is the most basic unit of a neural network. It receives several

inputs and multiplies each of them by a weight. The resulting values are added together, alongside an

extra bias term, and passed through an activation function, as seen in Figure 2.2. A single Perceptron

can perform linear regression when a linear activation is used and can perform logistic regression when

using a Sigmoid activation function.

Figure 2.2: Schematic of a single Perceptron.

Multiple Perceptrons with the same inputs can be combined to form a fully connected layer, also

called a dense layer. Using a Rectified Linear Unit (ReLu) as an activation function, the operation

performed by a dense layer Dl, taking as input the activation vector from the previous layer vl−1k and

producing a new activation vector vlk′ , can be described as:
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vlk′ = Dl(vl−1k ) = ReLU

(
Nk∑
k=1

W l
k′k · vl−1k + blk′

)
(2.1)

where Nk is the number of elements of the input vector, k and k′ are the indexes of input and output

vector respectively, Wk′k is the weight matrix that linearly transforms the input and blk′ are the bias terms.

Both Wk′k and blk′ are learneable parameters.

The Rectified Linear Unit (ReLU) activation function is usually preferred over the more classical

Sigmoid function for reasons that will be explained later. It is defined as:

ReLU(x) =

 0, x ≤ 0

x, x > 0
= max(0, x) (2.2)

A Multi Layer Perceptron (Figure 2.3) is created by composing multiple of these layers in sequence:

ŷk′ = gθθθ(xk) = (DNl ◦DNl−1 ◦ ... ◦D2 ◦D1)(xk) (2.3)

Figure 2.3: Schematic of a Multi Layer Perceptron.

where Nl is the number of dense layers, gθθθ is the function composition of all dense layers and xk is an

input vector. All the weights and biases of all the dense layers - W l
k′k and blk′ - are parameters that will

be adjusted using a learning algorithm such that the function gθθθ fits a particular dataset. We use the

symbol θθθ to represent all the parameters of the network that are learnable.

In a regression task, gθθθ will be learned such that it approaches as closely as possible a set of points

from a training dataset. A training dataset is defined as a set of Nt tuples D = {(xi,yi)}Nti=1, where each

input xi is a realization of a random variable or vector X, and each output yi is a realization of a random

variable or vector Y . The network is trained to produce the outputs when given the respective inputs in

the dataset.

In a classification task, the dataset contains a single label yi corresponding to a discrete class of the

respective input xi. During training, gθθθ will be learned such that, given an input xi, it produces vector

ŷi with the likelihood of xi belonging to each of the possible classes. The objective is to predict a high

likelihood for the true class yi and, by construction, a low likelihood for the incorrect classes. Since

we want to estimate the likelihoods of every class as the result of the last layer, we want the sum of
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the components of ŷ to equal 1. To accomplish this, the ReLU function of the last dense layer DNl′ is

replaced by the Softmax function. This function transforms a feature vector v ∈ RNk into a vector of

likelihoods ŷ ∈ [0, 1]Nk where
∑
j ŷj = 1:

ŷj = Softmax(v)j =
exj∑
k e

vk
(2.4)

Before the parameters θθθ can be learned, we need to introduce a loss function which will serve as an

objective function that the learning algorithm will seek to minimize.

In a regression task this loss is usually an L2 distance loss between the output of the network and

the true value in the dataset. Minimizing this loss in a single linear Perceptron produces the same results

as a linear regression with least squares.

In a classification task, the loss function L is typically a cross-entropy loss given by:

L(θθθ) = Ex,y∼X,Y − log(ŷk)
∣∣∣
k=y

= Ex,y∼X,Y − log(gθθθ(x)k)
∣∣∣
k=y

(2.5)

This cross-entropy has been simplified since the true class label corresponds to a true likelihood of 1

and the other possible classes correspond to a true likelihood of 0, canceling out the predicted likelihoods

of the incorrect classes and only taking into account the likelihood of the true class k = y predicted by

the network. Therefore, the loss function evaluates to 0 when the network assigns a likelihood of 1 to the

correct class and, by construction, 0 likelihood to the wrong classes. This corresponds to the minimal

loss. When the network produces likelihood predictions of less than 1 to the correct class, the loss is

positive and tends to infinity as the likelihood of the correct class tends to 0.

Before the training phase, the learnable parameters θθθ are initialized randomly. This means that the

predictions generated by the network are completely random and far from correct. The initial loss is

therefore a positive value that we will seek to minimize through training. In practice, the expectation in

the loss function is estimated by an average of the negative log-likelihoods across a batch of different

dataset samples, hence the stochastic nature of the gradient descent algorithm:

L(θθθ) =
∑

i∈Batch

−log(gθθθ(xi)k)
∣∣∣
k=yi

(2.6)

The process of training a neural network is comprised of three operations that are repeated through

many iterations until the network performs well. The first operation is forward propagation, where the

inputs are propagated through the network and the final loss is calculated. All neuron activations are

saved so that the next step, back-propagation, can occur. This second step involves using the chain

rule of derivation to calculate the gradient of the loss function with respect to every single learnable

parameter. The final operation consists of performing an update of the weights in the opposite direction

of the gradient:

θθθ ← θθθ − α∂L(θθθ)

∂θθθ
(2.7)

where α is the learning rate, a hyper-parameter that dictates the magnitude of the step. This parameter
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plays a major role in the stability and convergence properties of gradient descent algorithm. We just

described the simplest version of the Stochastic Gradient Descent (SGD) algorithm. More commonly,

this algorithm is used with an additional momentum term, which stabilizes the descent using an expo-

nentially weighted average of the previous gradient steps. Other algorithms such as ADAM (adaptive

moment estimation) [51], uses a different gradient normalization technique based on an adaptive mo-

ment term. ADAM is shown to converge faster than SGD but sometimes at the cost of finding worst

solutions. Nevertheless, ADAM was developed with deep learning and convolutional neural networks in

mind and is widely used to train CNNs.

2.2 Convolutional Neural Networks

Convolutional Neural Networks are deep neural networks that apply at least one convolution operation.

When used for image processing, two dimensional convolutions are employed to take advantage of the

spatial relationship between the pixels of an image. The relationship between a pixel and its closest

neighbours is far more important than its relationship with the pixels on the other side of the image.

Therefore it is far more efficient to compute inter-pixel relationships using kernel convolutions. In the

context of a multi-layer perceptron, this is equivalent to using shared weights between close-by pixels

and setting the weights between far-away pixels to zero. A drastic reduction in the number of parameters

of the network is therefore achieved. The weights in the convolution kernel matrices are learned with

back-propagation to minimize a certain training loss. [52]

2.2.1 Convolution Operation

A convolution operation can be described as sliding a kernel matrix over a larger input matrix. The

values of the input matrix are multiplied element-wise by the weights in the kernel matrix and finally

added together to produce a value in the resulting output matrix. Each element in the resulting matrix

corresponds to one position of the kernel over the input matrix, as seen in Figure 2.4. The size of the

kernel f defines the dimensions of the kernel matrix. The stride s defines by how much the kernel slides

in each step and is usually set to 1 or 2. The padding is the process of adding values around the input

matrix to allow the kernel to slide further out than normal. Usually a reflective padding of p = 1 is used

with a 3x3 kernel so that the input and output matrices have the same dimensions. A padding of p = 0

results in an output matrix smaller than the input matrix.

To see how this operation might extract features like edges from an image consider Figure 2.5. A

carefully chosen combination of kernel weights, when convolved with an input matrix consisting of a

transition from light to dark, produces an output matrix where the transition is highlighted, thus encoding

the presence of an edge.

The weights of the kernels used to be chosen manually in early computer vision algorithms. In

image classification CNNs the weights in the kernels are learned using a stochastic gradient descent

algorithm that minimizes a classification loss function at the end of the network. The gradient of the loss
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Figure 2.4: Convolution Operation.

function with respect to each learnable weight is calculated using back-propagation, also called auto-

differentiation in other scientific contexts. The weights are adjusted so that the expected classification

loss decreases. The network therefore learns kernel weights that can extract useful features to classify

the types of objects on which the network is trained.

Figure 2.5: Edge detecting kernel.

A convolution layer performs multiple operations of this type. The input consists of multiple matrices,

commonly called feature maps or channels. A filter is comprised a kernel matrix for each of the input

channels. A convolution operation is performed for each of the kernels in the filter and the corresponding

input maps. The results of these operations are added element-wise to produce a single output feature

map. A convolution layer can have many of these filters, creating multiple output feature maps, as shown

in Figure 2.6. Since convolutions are linear operations, a non-linear function is applied to each output

channel to give the network non-linear regression capabilities.

A parallel can be established between fully connected neural networks (dense MLPs) and convolu-

tional neural networks if we consider the following substitutions:

• A single activation value in an MLP is replaced by a feature map matrix.

• A single weight in an MLP is replaced by a kernel matrix.

• The multiplication operation is replaced by the convolution operation.

• The adding of values in an MLP becomes the element-wise addition of feature maps.
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Figure 2.6: Multi-filter convolution with 3 input channels (RGB image), and 2 output channels.

Therefore, in some sense, convolutional neural networks are also fully connected in the feature map

space, since the kernels map every input channel to every output channel. This is, of course, not true

in the pixel space, which is the reason why CNNs are so much less computationally expensive than

similarly sized fully connected neutral networks.

Mathematical Overview

A convolution layer Cl takes as input a set of feature maps φl−1c (i, j), produced by the previous layer

Cl−1, and performs convolutions on the input feature maps using a set of kernels Kl
c′c(i, j) with learned

weights:

φlc′ = Cl(φl−1c ) = Pool

(
ReLU

(
Nc∑
c=1

Kl
c′c ∗ φl−1c +Blc′

))
(2.8)

where ReLU is a non-linear activation function, Pool is a pooling function that sub-samples the feature

maps with the objective of reducing their spacial size. Nc is the number of input feature maps (channels)

and c, c′ are the indexes of the input and output feature maps respectively. The bias terms Bc′ are

also learnable parameters that introduce extra degrees of freedom to the neural network. The symbol ∗

represents a discrete convolution operation over the spatial indexes i and j:

(K ∗ φ)(i, j) =
∑
m

∑
n

K(m,n)φ(i+m, j + n) (2.9)

Technically, this should be called a cross-correlation operation, which is different than the classical

discrete convolution, since the filter indexes are not flipped. Herein, this operation shall be called convo-

lution with the intent of following the literature on convolutional neural networks and the operation implied

by their name.

Since the kernels are of limited size, typically 3x3, 5x5 or 7x7, the indexes m and n vary between

[−1, 1], [−2, 2] or [−3, 3] respectively. The kernel is therefore defined for these values of x and y.

The ReLU function is preferred over the classical Sigmoid function for two main reasons (Figure 2.7).
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Figure 2.7: Example of different commonly used activation functions.

Firstly, it allows the activations to be large without the gradient vanishing phenomenon that occurs in

deep neural networks. This phenomenon stops the network from learning effectively when the gradients

of the activation function are small. This happens with the sigmoid function because its gradient tends

to zero as its activation increases. The positive part of the ReLU function allows the gradient to be

propagated more effectively since its gradient is always equal to 1 for x > 0. Secondly, it allows a single

neuron to have an unbounded activation, which is argued to give the neuron a bigger expressive power.

It allows the neuron to overcome the activation noise, caused by other neurons, to produce clearer

representations in the following layers.

The pooling step Pool() is optional and is usually not performed at every layer in very deep convo-

lutional networks. The most common type of pooling is Max Pooling, where the maximal activations of

a feature map are selected, using a pre-selected stride. A stride of 2 corresponds to sub-sampling 1 in

4 pixels of the feature maps, in squares of side 2, as seen in Figure 2.8. Another common option is the

use of Average Pooling, where the average of the 4 pixels is taken instead of the maximum.

Figure 2.8: Example of Max Pooling sub-sampling operation.

2.2.2 Building a Full Convolutional Network

We just described how a single layer in a neural network transforms a set of feature maps, or an input

image, into another set of feature maps. The resulting maps combine information from all input channels,

encoding the spatial relationships between the input features using kernel convolutions, resulting in more

complex features. A convolutional neural network consists of the composition of many of these layers

to produce a complex set of features that can be easily used to produce accurate image classifications.
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This process is called feature extraction and is done automatically through the learnable parameters of

the network. The final feature maps are given by:

φNlc′ = f(φ0c) = (CNl ◦ CNl−1 ◦ ... ◦ C2 ◦ C1)(φ0c) (2.10)

where Nl is the number of convolutional layers of the network, f is the function composition of all

covolutional layers and φ0c is the input image.

Figure 2.9: LeNet - Convolutional architecture used for character recognition in [10], where each plane
is a feature map and the final 3 layers are fully connected.

Image classification CNNs are completed with a classification head. This classification head trans-

forms the final feature maps by flattening them into a 1 dimensional vector and feeding it through a

fully connected Multi Layer Perceptron, as in Figure 2.9. The output is a vector ŷk′ whose components

estimate the likelihood of each object class, in this case characters, being present in the image.

The input to the Multi Layer Perceptron v0k is a flattened representation of the final feature maps φNlc′ .

φNlc′ and v0k have exactly the same elements but the former is a tensor with three dimensions Nc×H×W ,

where H and W are the height and width of the final feature maps, while the latter is a vector with a

single dimension equal to Nc ·H ·W .

The learneable weights of network we just described are all the weights and biases in the convo-

lutional and dense layers - Kl
c′c, B

l
c′ , W

l
k′k and blk′ - henceforth conjointly designated by θθθ. The full

classification CNN hθθθ can be defined as the composition of the convolution layers f from equation

2.10 and classifier g from equation 2.3, producing the class likelihood predictions ŷ from input images

φ0c(i, j) = x:

ŷ = hθθθ(x) = g(f(x)) (2.11)

Training the full network is done with the Stochastic Gradient Descent algorithm described in section

2.1, where now the dataset D = {(xi, yi)}Nti=1 contains tuples of images and the respective labels.
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2.3 Convolutional Neural Network Architectures

In the previous section we covered the basics of how a Convolutional Neural Network is constructed

and how it learns to classify objects in an image by training with a back-propagation algorithm. This de-

scription was based on the AlexNet architecture [12], which was the first large scale CNN trained on two

Graphical Processing Units (GPUs), using model parallelism, and achieved outstanding performance on

the ImageNet dataset [11]. This network employed 5 convolutional layers with ReLU activation functions,

3 of them with Max Pooling layers. The number of channels of each layer, starting with 3 for the RGB

input image, was the following: N l
c = {3, 96, 256, 384, 384, 256}. The output of these convolutional layers

was flattened to a 9216 component vector and fed through another 2 fully connected (dense) layers with

4096 neurons each. The classification layer had 1000 neurons, corresponding to the 1000 categories of

ImageNet. A final Softmax layer produced the probability scores of each class. This network had more

than 62 million learneable parameters, which was unprecedented in 2012, and achieved a 40.7% top-1

error (true class is not the highest probability prediction) and a 16.4% top-5 error (true class is not within

the 5 with highest probability prediction).

The increase in computational resources, mostly in terms of GPU memory, processing speed and

number of processing cores, has allowed bigger models to surface, which achieved even better classifi-

cation scores on the ImageNet benchmark. Two of the most used convolutional architecture are VGGs

and Residual Networks (ResNets), whose variants will be referenced and applied multiple times in this

work.

2.3.1 VGG

The VGG network [13] (from the UK based Visual Geometry Group) is an extension of AlexNet that uses

more convolutional layers and overall a larger number of parameters. Several variants are created from

the VGG-11, with 8 convolutional layers and 3 fully connected layers totalling 133 million parameters, to

the VGG-19, with 16 convolutional layers, 3 fully connected layers and 144 million parameters. Most of

the parameters are in the fully connected layers, which stay the same across all network variants, but

most of the computation time and memory usage, during training, is in the convolutional layers. The

19 layer variant of this architecture achieved a 23.7% top-1 error and a 6.8% top-5 error on ImageNet.

Figure 2.10 shows the schematic representation of a VGG16 architecture.

Computational Performance

The number of FLOPs (floating point operations - adding, multiplying, ...) in a convolution operation with

kernel size k × k, feature size h × w with input channels c and output channels channels c′ is equal to

2× k2×h×w× c× c′, which for k = 3, h = w = 224 and c = c′ = 64 equates to 3.7 Giga-FLOPs. These

values correspond to the second layer of a VGG network. The number of FLOPs for a matrix operation

in a n × n dense layer is equal to n2 + n(n − 1), which gives only 34 Mega-FLOPs for n = 4096. This

corresponds to the second to last dense layer of a VGG network.
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Figure 2.10: Schematic representation of a VGG16 network, with 13 convolutional layers, 5 of them with
max pooling, and 3 fully connected layers, totalling 138 million parameters. The numbers h × w × c
represent the resolution h× w and the channel depth c of the feature maps at each stage.

The memory usage comes from the fact that all activations of the network must be kept in memory so

that the back-propagation can occur and all the gradients can be computed. Besides this, all gradients

at each neuron are also stored, which takes just as much space as the activations. The parameters and

respective gradients represent only a small part of the memory usage when compared to the activations.

The reason that convolutional layers require more memory is that the feature maps can have large spatial

and channel dimensions like (c, h, w) = (64, 224, 224) while dense layers only have a single vector of size

(n) = (4096) and therefore require less memory for the activations.

The importance of the model size comes into play when deploying the model, in mobile devices or

other memory limited applications, because during inference the activations need not be kept in memory.

In summary, convolutional layers require more FLOPs and memory during training than dense layers but

less memory is required during inference, because the number of parameters is lower.

The VGG family ended up having the models with the highest computational requirements in terms

of FLOPs and model size. Subsequent approaches focused on achieving better performance with the

same or less computational resources. Still, they are widely used in other deep learning research topics

because they represent the CNN architecture in its most basic and general form, whereas more recent

approaches fundamentally alter the structure of CNNs to make them more efficient.

Batch Normalization

In most applications the VGG architecture is completed with batch normalization layers [53]. These

layers normalize the activations of the feature maps. This makes the activations of the different layers

more independent, which stabilizes the training of the whole network, allowing higher learning rates.

The batch normalization starts by transforming the feature maps of a layer φlc(i, j) by subtracting

their mean and dividing the result by the standard deviation, over a batch of images. The normalized

features are then scaled and shifted by two learneable parameters γ and β:
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φ̂lc(i, j) = γ
φlc(i, j)− E[φlc(i, j)]√

V ar[φlc(i, j)]
+ β (2.12)

The parameters γ and β allow the network to learn the optimal mean and standard deviation of

the activations of a layer without creating training instabilities between layers. This may also have a

regularizing effect because the activations for a single image are no longer deterministic, since they

depend on the images from the rest of the batch, introducing perturbations that will force the network to

learn more robust and general representations.

Although not discussed in the batch normalization article [53], it is believed that the normalization pro-

cess itself also helps the network generalize better, because the normalization is an invariance mecha-

nism, in this case, invariant to scalling and shifting of the input. This means that, for example, the network

becomes invariant to image brightness and contrast across batches, which is a form of generalization.

This effect is more pronounced with a smaller batch size and in the limit of 1 image per batch it is called

instance normalization. In that case, full invariance is achieved not only across batches but across each

image. The deeper batch normalization layers would therefore be invariant not only to brightness and

contrast, but also to texture and more complex spurious patterns. Each batch normalization layer thus

adds another level of invariance to the network and aids in generalization.

2.3.2 ResNet

One major problem with deep neural networks, in general, is the phenomenon of vanishing gradients.

Gradient vanishing happens when an architecture has many layers and the gradient is not properly back-

propagated to the earliest layers, which makes those layers essentially frozen during training. This can

happen when using a sigmoid activation function because the gradient of this function in near 0 when

the function tends to −∞ and ∞. The ReLU activation function partially solves this problem but not

completely.

A poor initialization of weights, with small matrix singular values, can also completely eliminate an

input signal to the point that only the deeper weights affect the network output. In this case the earlier

weights will receive no back-propagated gradient signal and will not move. A good initialization of the

network weights may partially solve this problem.

A third solution is the introduction of skip-connections and residual connections in Residual Neu-

ral Networks (ResNets) [15]. This architecture is composed of multiple residual blocks (Figure 2.11),

whose convolutional layers compute residual feature maps, which are added to the input feature maps

to produce the output feature maps. In this manner, the gradient is propagated straight through the

skip-connection without being altered and no gradient vanishing will occur.

This allows the creation of much deeper networks, up to hundreds of layers deep, which are much

more stable and easier to train. It is argued that deeper representations are preferable for image classi-

fication since they allow more complex patterns to be captured. Many variants of ResNets were created,

from the ResNet-18 with 16 convolutional layers divided into 8 residual blocks, to ResNet-152 with 150

convolution layers divided into 50 residual blocks. All variants have one extra input convolution layer and

18



Figure 2.11: Schematic representation of a residual block with two convolutional layers and an identity
branch that skips the convolutions.

one final dense classification layer. The 152 layer variant achieved a 19.4% top-1 error and 4.5% top-5

error on ImageNet. Table 2.1 summarizes all the different standard residual network architectures.

Table 2.1: Summary of the architectures of the ResNet family. The numbers k× k, c of each convolution
represent the kernel size k × k and the number of filters c of each convolution. The brackets [.] define a
residual block with 2 or 3 convolutional layers. Each block can be repeated in series ×n times.

ResNets are widely used in other deep learning research topics because many of the CNN archi-

tectures that were later developed are based heavily on the residual architecture. Thus, the ResNet

architecture can reasonably represent many of the architectures that followed it.

2.4 Convolutional Neural Network Applications

Until now we described convolutional neural networks in the context of supervised image classification,

assuming that each image only portraits a single object of interest. In typical real-world application

this framework must be extended to images where one or more objects may be present, or none. The

algorithms should therefore be able to identify all the objects in the images as well as their respective

positions. We shall cover some of these applications since they will be the object of experiments later in

this thesis.

Semantic Segmentation consists of correctly labelling each pixel in an image according to what
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class of objects it belongs to. Object Detection consists of drawing a bounding box around each known

object in an image and correctly predicting its class. Instance Segmentation can be thought of as the

combination of both these tasks, where the pixels from two objects of the same class are identified as

belonging to two different instances of the same class. This is done by drawing polygons that cover each

unique object in the image and predicting its class.

Besides these supervised tasks, we shall also explore applications and some unsupervised tasks in

the context of image generation and style transfer. These techniques are often the building blocks for

image augmentation methods, which are useful in making networks learn more general representations.

Our texturization technique is itself based some of these techniques so they will be covered with some

detail.

2.4.1 Semantic Segmentation

Seminal Work

The first use of a deep convolutional neural network for semantic segmentation was in [27], where fully

convolutional neural networks (FCNs) were shown to be capable of semantically segmenting images.

The method consists of simply taking a section of a common architecture like a VGG16 network, adding

an extra convolutional layer with the number of channels equal to the number of classes, up-sampling the

resulting feature maps to the input size and finally passing it through a soft-max layer. Each feature map

encodes therefore the network predictions of the probability of each pixel belonging to a class of object.

These predictions are compared to the true semantic maps with a cross-entropy loss, which is minimized

through a gradient descent algorithm. Unknown objects and background pixels are usually assigned

their own default class. To perform inference, the class with highest probability is assigned to each

pixel. This architecture is improved by adding extra prediction layers at the early convolutional layers of

the encoder, upsampling the predictions to the full resolution and combining the results of all prediction

layers. Figure 2.12 showcases the semantic segmentation task with a simple FCN architecture.

Figure 2.12: Schematic representation of a basic FCN architecture for semantic segmentation.
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Performance Metrics

The predictions of the network can further be evaluated using different performance metrics. The most

commonly used metric is the mean Intersection over Union (mIoU) between semantic predictions and

the true semantic segmentation maps. Let Ω be the set of all pixels in the image, Pk ∈ Ω the set of

predicted pixels for a class k ∈ [1,K], Tk ∈ Ω the set of true pixels for a class k, and |.| the cardinality

operator. The mIoU is calculated as:

mIoU =
1

K

∑
k

|Pk ∩ Tk|
|Pk ∪ Tk|

=
1

K

∑
k

Ckk∑
k′(Ckk′ + Ck′k − Ckk)

(2.13)

where Ckk′ is the confusion matrix of the network predictions, with elements Ckk′ = |Tk ∩ Pk′ |, which

counts the number of occurrences of all K2 possible true/predicted class pairs.

Pixel Accuracy (PA) is calculated by dividing the True Positives by the total number of pixel class

predictions:

PA =
∑
k

|Pk ∩ Tk|
|Ω|

=

∑
k Ckk∑

k

∑
k′ Ckk′

(2.14)

Mean Pixel Accuracy (MPA) is similar except that the accuracy is calculated class-wise and averaged.

The True Positives are divided by the False Negatives plus the True Positives:

MPA =
1

K

∑
k

|Pk ∩ Tk|
|Tk|

=
1

K

∑
k

Ckk∑
k′ Ckk′

(2.15)

Finally, the Frequency Weighted Intersection over Union (FWIoU) is a version of mIoU where the IoU

of each class is weighted by the frequency of the respective class:

FWIoU =
∑
k

|Tk|
|Ω|
|Pk ∩ Tk|
|Pk ∪ Tk|

=
∑
k

∑
k′ Ckk′∑

k′
∑
k′′ Ck′k′′

∑
k Ckk∑

k′(Ckk′ + Ck′k − Ckk)
(2.16)

Fully Convolutional Neural Networks

The main shortcoming of the FCNs in [27] was that the neurons of the final layer had a relatively small

receptive field and therefore failed to capture global information to classify each pixel. To solve this, [54]

proposed averaging the whole feature maps and concatenating this channel-wise vector to each neuron,

giving it contextual information about the whole image.

Since the predicted segmentation maps are generated by upsampling feature maps with low spatial

resolution, the resulting map typically have low spatial precision. This issue can be addressed by us-

ing fully connected Conditional Random Fields (CRFs) [26] or Markov Random Fields (MRFs) [55] to

improve the localization of the predictions of the upsampled layer.

Encoder-Decoder Architectures

The performance of semantic segmentation architectures improved when encoder-decoder models with

deconvolution operations were introduced in [56]. This architecture mirrors the feature extractor (en-
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coder) with a decoder that learns deconvolution layers, also called transposed convolutions, to produce

segmentation maps. Transposed convolutions act in an opposite manner to vanilla convolutions, by tak-

ing each pixel, multiplying it channel-wise by the kernel weights and adding the multiple pixel values to

the output feature map. This allows a learned upsampling of the feature maps which incorporates and

combines information from multiple channels.

The encoder-decoder design is improved in [57] by using the maxpooling indexes of the encoder to

upsample the feature maps in the decoder instead of learning deconvolutions. The upsampled feature

maps can then be processed using vanilla convolutions.

Figure 2.13: Schematic representation of the U-Net architecture for semantic segmentation.

One major semantic segmentation advancement in the category of encoder-decoder architectures

was achieved in the medical sector with the design of U-Net [28], shown in Figure 2.13. This network

introduces skip connections between layers of the encoder and the corresponding (mirrored) deconvo-

lutional layers of the decoder. These connections allow the network to inject fine spatial information

from the early layers of the network into the last layers of the decoder, improving the performance and

localization of the semantic predictions.

Feature Pyramid Networks

Feature Pyramid Networks (FPNs) use skip-connections like U-Net but forego the need for deconvolu-

tions. The feature maps of the encoder are passed through a 1 by 1 convolutional layer and the deeper

maps are sequentially upsampled and concatenated with the maps at the next layer [58].

The method of [54] is generalized to multiple scales by [59], where the feature maps produced by an

encoder are passed through a pyramid pooling scheme, which pools the image at multiple pool sizes,

including global pooling. All features from pooling pyramid are passed through a dimensionality reducing
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1x1 convolution, upsampled to the same resolution and concatenated. The resulting multi-scale features

are then used to predict semantic maps with a final convolutional layer. Figure 2.14 exemplifies this

procedure.

Figure 2.14: Pyramid Pooling scheme that processes the feature maps produced by a CNN at different
resolutions before concatenating and combining them.

Deeplab Architecture

Deeplab [60] is one of the most used architectures for semantic segmentation. It employs dilated (also

called atrous) convolutions. This type of convolution uses dilated (sparse) kernels, which increases the

effective receptive field of each neuron without increasing the computational cost of the layer. With a

dilation factor of d, the kernel weights will be separated by d− 1 zero-valued weights, which do not need

to be used in the convolution computation since they have no effect on the result (Figure 2.15). A n× n

kernel with a dilation factor of d will have a receptive field of d(n− 1) + 1× d(n− 1) + 1. For example, a

3× 3 kernel with dilation d = 2 will have a receptive field of 5× 5. This type of convolution, when applied

in a deep neural network, allows the relationships between distantly spaced features to be learned in

fewer layers.

Figure 2.15: Representation of an atrous convolutional kernel with different dilation rates.

Furthermore, this architecture uses a similar pyramid pooling scheme to [59], seen in Figure 2.14,

where the multi-scale pooling operations are replaced by atrous convolutions with different dilation rates

to produce multi-scale feature pyramids. The predictions are produced with a final convolutional layer

and a fully connected Conditional Random Field to improve the localization of the predictions, as in [26].
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Figure 2.16 shows the full pipeline, where the pyramid pooling scheme is included in the DCNN module.

Figure 2.16: Pipeline of the Deeplab architecture.

Later in this thesis, the FCN and Deeplab semantic segmentation architectures will be subject to

different experiments in the context of domain generalization.

2.4.2 Object Detection

Passing from an image classification task to an object detection task can seem trivial. To detect multiple

objects in an image simply pass an image classifier in multiple patches of the input image and con-

sider a detection when the confidence (probability prediction) for an object is above a certain detection

threshold. This can be done in a rolling window fashion, at multiple scales and aspect ratios. The prob-

lem becomes apparent when we consider the number of forward passes that a classifier would have to

perform to detect all the objects in a single image.

Some applications of object detection algorithms require the detection to happen in real time, so

performing classification of all possible image patches becomes infeasible. Even if this process is par-

allelized to reduce the computation time, the shear amount of floating point operations is completely

impractical.

R-CNN and Fast R-CNN

R-CNNs [21] were the first improvement to this method. They use a region proposal step, based on a

selective search algorithm [61], to select the Regions of Interest (ROIs) that are more likely to contain an

object. The selected image patches are further filtered by combining patches that overlap or are included

in each other. The different patches are then resized to a fixed square resolution. A convolutional neural

network processes each patch into a feature vector. Finally, a SVM classifier [62] predicts the probability

of each class from this feature vector. The feature vector is also used to predict an offset of the ROIs to

produce the final bounding boxes.
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Still, this approach is not fast enough because a large number of image patches need to be pro-

cessed by the CNN, often with redundant computations being performed more than once. Fast R-CNN

[22] solves this problem by first processing the whole image with a CNN in a single pass, producing

a set of feature maps. The selective search algorithm is then applied to the feature maps to produce

a set of ROIs. Since the bulk of the computation is already performed, only some fully connected lay-

ers are needed to process each ROI into a feature vector and therefore the whole image is processed

a lot faster. A final classifier and regression layer compute the label probabilities and bounding box

coordinates respectively. The main speed bottleneck now becomes the selective search algorithm.

Faster R-CNN

Faster R-CNN [23] further improves this architecture by substituting the selective search algorithm by a

region proposal network (RPN). The region proposal network is based on anchors, which are predefined

image patches, at different scales and aspect ratios. The region proposal network calculates, for each of

these anchors, a objectedness score indicating the probability of an object being present in that patch.

This is achieved with one or more convolutional layers where the final layer has a number of channels

equal to the number of anchors. The feature maps therefore represent the objectedness score at each

pixel for each possible anchor. In the same manner as R-CNN, a final classifier layer produces the class

probabilities and a final regression layer produces the bounding box coordinates from the feature vector.

The full architecture is presented in Figure 2.17.

Figure 2.17: Schematic of the Faster R-CNN architecture.

The objectedness loss is computed by assigning a positive label (object present in the patch) to the

anchors whose Intersection over Union (IoU) with a ground truth box is higher than 0.7 and assigning a

negative label to the anchors whose IoU with a ground truth box is lower than 0.3. Intermediate values

are ignored because they introduce noise during training. Since negatively labeled anchors are more

common, the loss is calculated using a sub-sample of 256 anchors, with as many positive anchors as

possible, up to 128. The box regression loss is computed as a simple regression loss to the ground truth

box coordinates.
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The full architecture is trained in a 4-step process. First, the RPN is trained to only predict object-

edness scores and bounding box predictions using the two losses described in the previous paragraph.

Secondly, a Fast R-CNN is trained with a different feature extracting CNN, using the predictions from

the trained RPN. Third, the RPN is re-trained using the feature extractor that was learned by the Fast

R-CNN, which is now frozen. Lastly, the Fast R-CNN is fine-tuned using the newly trained RPN network.

The Fast R-CNN and RPN now form a unified network with a shared feature extractor.

The Faster R-CNN architecture will be tested later in this thesis in a domain generalization task.

YOLO architecture

For completeness, we present yet another successful architecture which achieves an even faster infer-

ence time with acceptable performance. You Only Look Once (YOLO) [24] dispenses with the region

proposal network and poses object detection as an end-to-end regression problem. An image is sub-

divided into S × S patches. The network predicts the bounding boxes, a confidence score and class

probabilities for each image patch. These predictions can be directly used to train the network. To

perform inference, the predictions are filtered and overlapping bounding boxes are combined.

Performance Metrics

In Object Detection tasks, the networks are tasked with producing a bounding box for each object in an

image with the respective class probabilities. To convert these outputs to performance metrics we need

to first define what constitutes a detection. This introduces the notion of Intersection over Union (IoU)

for bounding boxes. For a ground truth box Bt and a predicted box Bp, where both are sets of pixels and

|.| is the number of elements in the set, IoU is defined as:

IoUtp =
|Bt ∩Bp|
|Bt ∪Bp|

(2.17)

A pair Bt, Bp is considered a detection if IoUtp is greater than a certain threshold, IoUtp > IoU .

Furthermore, a detection is considered positive if the true class is predicted with a probability higher

than a certain confidence level (C) and negative otherwise. This defines the number of true positive

(TP), true negative (TN), false positive (FP) and false negative (FN) detections for a given confidence

level and a given IoU, for a certain class (k). Furthermore, we may now define the Precision (Pk) score

and the Recall (Rk) score for a given confidence level, IoU and class:

Pk(IoU,C) =
TP

TP + FP

∣∣∣∣
IoU,C,k

(2.18)

Rk(IoU,C) =
TP

TP + FN

∣∣∣∣
IoU,C,k

(2.19)

To construct the performance metrics, these values are computed at multiple levels of confidence

and IoU, and the results are averaged to produce the Average Precision (AP) and Average Recall (AR)

for a given class:

26



APk =
1

NIoUNC

∑
IoU,C

Pk(IoU,C) (2.20)

ARk =
1

NIoUNC

∑
IoU,C

Rk(IoU,C) (2.21)

The values of IoU are usually linearly spaced points between 0 and 1, excepting 1. The values

of confidence level C are usually defined with linearly spaced points in an interval between 0.5 and 1,

excepting 1. Occasionally, the IoU threshold may also take a single value, for example IoU = 0.5.

Finally, the performance metrics are constructed by averaging these values across classes to pro-

duce the mean Average Precision and the mean Average Recall:

mAP =
1

k

∑
k

APk (2.22)

mAR =
1

k

∑
k

ARk (2.23)

Sometimes these metrics filter detections by selecting only the first n with highest confidence levels,

with the purpose of eliminating noisy low-confidence detections. Furthermore, once again to avoid noisy

detections, only bounding boxes above a certain area are considered. This is applicable when there is

no interest in detecting small or far away objects.

2.4.3 Instance Segmentation

Once again for completion, we cover Mask R-CNN [29], which performs the tasks of semantic segmenta-

tion and object detection simultaneously. This is achieved by extending the Faster R-CNN with a binary

semantic segmentation Fully Convolution Network (FCN). Each RoI produced by the Faster-RCNN is

passed through the FCN, which produces the class mask.

2.4.4 Image Generation

Until now we explored different architectures for image classification, object detection and semantic

segmentation of images. All of these tasks are examples of supervised learning tasks, where a label

(supervision) is associated with each image during training and the purpose of the network is to learn to

predict the label.

Unsupervised learning is a different class of learning algorithms where no label is associated each

data sample. The algorithms of this class are typically tasked with grouping data-points, as for example

the K-means algorithm, learn a lower dimensional representation of the data, like Principle Compo-

nent Analysis (PCA) and other dimensionality reduction techniques, learn a distribution that can be

re-sampled for new data-points, learn a mapping between datasets, and other more specific tasks.

We will now explore two architectures that can be implemented with CNNs and that are widely used

for most tasks that involve generating images in an unsupervised manner. These architectures will be
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reference multiple times during this work and so it is important to properly introduce them.

Auto-Encoders

Auto-Encoders (AEs) are a type of neural network architecture whose purpose is to learn a lower di-

mensional representation of the data by passing it through an information bottleneck and using that low

dimensional representation to reconstruct the original data [52, 63]. An Auto-Encoder is composed of

an encoder network which maps inputs to the lower dimensional latent space, and a decoder network

which maps the latent space to the original higher dimensional input space (Figure 2.18). This pro-

cedure forces the network to learn an internal latent representation that captures as much information

about the data as possible. Auto-Encoders find application in unsupervised representation learning, im-

age denoising, image compression and image in-painting because of their ability to filter out irrelevant

information. Auto-Encoders are usually trained with a reconstruction loss which can be a simple L2

distance loss, another distance metric or even a pretrained and frozen neural network based perceptual

loss [64]. When applying Auto-Encoders to images the encoder and decoder networks are implemented

as a vanilla CNNs with transposed convolutions or other upsampling layers for the decoder.

Figure 2.18: Example of a Fully Convolutional Auto-Encoder.

The main caveat of classical Auto-Encoders is that no constraint is applied on the learned latent

representations. This means that the representations can have any structure and may not be suited to

interpolation. Therefore, generating new data-points by sampling the latent space and decoding it will

yield unpredictable results. Variational Auto-Encoders (VAEs) [31] solve this problem by introducing a

reparametrization trick whereby, instead of mapping an input to its latent representation, the encoder

maps an input to the parameters µ and σ of a gaussian distribution in each dimension of the latent

space. The decoding process consists of sampling a point from this latent gaussian distribution and

passing it through the decoder network to produce an output. Similarly to classical AEs, a distance loss

is applied between the input and output. Additionally, a Kullback-Leibler (KL) divergence loss is applied

between the latent gaussian distribution and a prior gaussian distribution with µ = 0 and σ = 1. This KL

divergence regularizes the latent space such that the distribution of representations is contiguous, and

therefore two data points are interpolable in the latent space. This allows sampling and generating new

data points following the same distribution as the original dataset.

A more recent evolution replaces the reparametrization trick and KL divergence with a Wasserstein
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distance metric (earth-mover distance) between the latent distribution and a prior normal gaussian dis-

tribution [65]. Wasserstein Auto-Encoders (WAEs) have been shown to generate more realistic images

according to the Frechet Inception Distance (FID) [66] score. Moreover, they are a generalization of

adversarial Auto-Encoders (AAEs) [67], which use an adversarial loss to regularize the latent space.

Generative Adversarial Networks

Generative Adversarial Networks (GANs) [34] use a different mechanism to generate realistic images.

A generator network G(z) maps a prior low dimensional noise distribution z ∼ p(z), usually gaussian,

to a high dimensional output distribution x̂ ∼ p(x̂), typically images, such that the output distribution

is similar to a real distribution p(x). A discriminator network D(x) is then tasked with predicting the

probability ŷ = D(x) that an image is sampled from the dataset. This architecture is called adversarial

because the generator and discriminator are playing an adversarial game in which the discriminator tries

to distinguish real images form generated images and the generator tries to produce images that fool

the discriminator. This is achieved with an adversarial min-max objective:

min
G

max
D

Ex∼p(x) log(D(x)) + Ez∼p(z) log(1−D(G(z))) (2.24)

An alternated gradient step is used to update the generator and discriminator. First, the discriminator

is updated with a gradient ascent step using a batch of dataset samples and batch of noise samples.

The first step can be repeated multiple times. Secondly, the generator is updated with a gradient descent

step using another batch of noise samples. The generator uses the gradient signal from the discriminator

to learn how to fool it.

Deep Convolutional Generative Generative Networks (DCGANs) [36] apply this adversarial training

scheme with a CNN based discriminator and a generator with transposed convolutions and/or upsam-

pling layers to generate images (Figure 2.19).

Figure 2.19: Training scheme for the DCGAN architecture.

Conditional Generative Adversarial Networks (CGANs) [35] can use label information to condition

image generation. The generator will therefore learn a distribution conditioned on the image labels and

generate images of the desired class. This is achieved by feeding the image label as input to the gener-
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ator, sampling it randomly alongside the noise, and by feeding it as input to the discriminator, using the

sampled and real image labels. InfoGAN [38] conditions the image generation in an unsupervised man-

ner, allowing the networks to discover disentangled factors of variation in the images. This is achieved

by maximising the mutual information between the latent variables and the generated images using a

separate similarity measuring network and loss functions.

GANs have also found application in image to image translation. Pix2Pix [68] uses a similar architec-

ture to the CGAN but the image is conditioned with another image as a label. For example, this network

can learn to map drawings to the respective real images, map street maps to the respective satellite

view, or map building façade segmentation maps to real images of building façades. This technique is

however densely supervised since it requires one-to-one translation examples. CycleGAN [69] achieves

unpaired image to image translation by using two translation networks, ŷ = G(x) and x̂ = F (y) between

two image domains x ∼ X and y ∼ Y , and enforcing cycle consistency between them with an L1 loss.

Additionally, one discriminator is used for each network, and every network is trained with a similar ad-

versarial scheme as before (Figure 2.20). This leads perfectly to the next section, which will explore

other mechanisms for image to image translations with style transferring techniques.

Figure 2.20: Schematic of the CycleGAN Architecture with a Cycle Consistency Loss.

2.4.5 Style Transfer

Overview

Image style transfer is the task of taking the content from an input image x and re-producing it in the

style of a style image s. The first instance of CNN based style transfer happens in [49]. This was

achieved by optimizing the pixel values of the content image to minimize a content loss Lc and a style

loss Ls. Firstly, the output image is initialized as white noise. The content and style images are passed

through a feature extractor pretrained on ImageNet and the activations of all layers are stored for both

images. At each step, the output image is passed through the feature extractor. The content loss Lc
is calculated by averaging the squared distance between the content features and the output features

across different layers. The style loss is calculated using the Gram matrices of the features in each layer.

For the activations φlc(i, j) of layer l, with channel index c and spatial indexes i, j, the Gram matrix Glc,c′

is the spatial correlation matrix of φlc(i, j) between channels:
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Glc′,c =
∑
i

∑
j

φlc′(i, j)φ
l
c(i, j) (2.25)

The style loss Ls is then the average squared difference between the Gram matrices of the output

images and the style image across different layers. Finally the gradients of the loss with respect to the

output image are calculated and the output image is updated to minimize the loss.

Since this involves an optimization process, producing a single stylized image is an expensive pro-

cess. Later, a convolutional auto-encoder architecture was adopted, which learns the image transforma-

tion associated with a certain style image [70]. This technique performs equivalent style transfer with a

single network pass, forgoing the need of the expensive optimization steps. Still, this method is limited

to a single style per network. Adaptive Instance Normalization (AdaIN) opened the door to arbitrary

style transfer [71], where a single auto-encoder network, when fully trained, can perform style transfer

between any two images in a single pass.

Style Transfer with Adaptive Instance Normalization

AdaIN is a moment-matching process. It is assumed that the style information of the images is fully

represented in the first and second order moments of the feature maps produced by a pretrained encoder

network. The encoder part of the auto-encoder e(x) produces a set of content feature maps e(x) =

φxc (i, j). Similarly, the same encoder produces the style feature maps e(s) = φsc(i, j). The index c

represents the channel and i, j are pixel indexes. These indexes may be dropped in the mathematical

formulation to ease the legibility. AdaIN normalizes the content feature maps φxc (i, j) to have the same

first and centered second order moments as the style feature maps φsc(i, j). The mean and standard

deviation of the feature maps are calculated by:

µc(φc) =
1

HW

H∑
i

W∑
j

φc(i, j) (2.26)

σc(φc) =

√√√√ 1

HW

H∑
i

W∑
j

(φc(i, j)− µc(φc))2 (2.27)

The normalization process of AdaIN is the following:

AdaIN(φxc , φ
s
c) = φx|sc (i, j) = σ(φs)

(
φx − µ(φx)

σ(φx)

)
− µ(φs) (2.28)

The stylised image output o is generated by the decoder part of the auto-encoder o = d(φ
x|s
c (i, j))

The content and style losses evaluate the images produced by the decoder by re-passing them

through the encoder and comparing the feature maps to the original ones:

φoc (i, j) = e(o) (2.29)

The content loss is given by the mean squared reconstruction error across channels and pixels:
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Lc =
1

CHW

C∑
c

H∑
i

W∑
j

(
φx|sc (i, j)− φoc (i, j)

)2
(2.30)

The style loss is given by the mean squared error in the moments across all channels. This loss is

averaged across the feature maps produced at multiple layers L of the encoder.

Ls =
1

LC

L∑
l=1

[
C∑
c=1

(µlc(φ
s
lc)− µlc(φolc))

2
+

C∑
c=1

(σlc(φ
s
lc)− σlc(φolc))

2

]
(2.31)

The final loss is the sum of the two losses parameterized by an hyper-parameter λ set to 10 [71]

unless otherwise specified:

L = Lc + λLs (2.32)

The network is trained to empirically minimize the expected value of the loss Ex∼X,s∼S L(θθθ) where θθθ

are the learneable weights of the decoder. The complete style transfer network is shown in Figure 2.21.

Figure 2.21: AdaIN architecture.

The encoder is a VGG network pre-trained on ImageNet with a classical image classification task.

Learning the style transfer task consists of training a decoder that is able to inverse the encoder when

the feature map statistics are altered by AdaIN. This stylization technique is therefore an example of

transfer learning, since the representations learned by the encoder are used in a different downstream

task. The full style transfer network is then trained using a content dataset and a style dataset. The

content dataset is MSCOCO, Microsoft’s dataset of Common Objects in Context. The WikiArt Dataset,

Wikipedia’s dataset of art paintings is used for the style images. Each includes around 80 000 images

of differing resolutions. Since the auto-encoder is fully convolutional, this method can work in images of

any resolution.
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2.5 Texture Bias in Convolutional Neural Networks

It is commonly assumed that CNNs owe much of their performance to their ability of recognizing shapes.

Many feature visualization techniques [50, 72, 73] show that CNNs effectively learn edge detectors,

curve detectors, circle detectors, animal face detectors and human face detectors. The multi-layered and

translation invariant architecture allows the network to combine multiple of these shapes to create more

high-level shape detectors. It was thought that the structured combination of these features produced

networks that were sensible to high level shape cues.

However, some recent studies showed that CNNs are in fact more texture biased than previously

thought. In [74], networks with a very low receptive field were shown to work surprisingly well on Im-

ageNet classification. These bag-of-local-features networks (BagNets), are restricted to only capture

small scale features and are therefore texture-biased by design. The fact that they work well on Ima-

geNet indicates that other networks could be using texture cues to classify images.

Figure 2.22: Classification of a standard ResNet-50 of (a) a texture image (elephant skin: only texture
cues); (b) a normal image of a cat (with both shape and texture cues), and (c) an image with a texture-
shape cue conflict, generated by style transfer between the first two images.

The authors of [75] used the original iterative style transfer technique [49] to generate a Cue-Conflict

dataset, based on ImageNet, with conflicting shape and textural cues. When these images are pre-

sented to CNNs and to human subjects, the CNNs are more likely to classify the image based on

texture/style than their human counterparts (Figure 2.22). The human subjects, on the other hand, clas-

sified images mostly based on shape/content cues. This study then showed that the texture-bias of

CNNs can be attenuated by training the network in another stylized version of ImageNet. This dataset,

called Stylized-ImageNet, is generated using the AdaIN-based fast style transfer algorithm [71] with the

style images coming from Kaggle’s Painter by Numbers dataset [76]. This works as a data augmen-

tation and regularization technique. By making the textural cues arbitrary with respect to the content,

the network must learn to classify the content of the image purely based on the shape patterns. The

data augmentation thus renders the network texture invariant. Furthermore, networks that are trained

on the stylised dataset show more resistance to class-preserving image transformations like, changes

in contrast, filtering and different forms of noise.

This work is continued in [77], which performs a multi-sectioned analysis of the origins of texture bias

in CNNs. Some key remarks include:
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• By analysing performance on Stylized-ImageNet and other mixed-cue datasets throughout training,

it is concluded that shape features can be learned just as readily as textural features and often

shape features can be learned with less data, less iterations and more accuracy.

• By training classifiers on top of different layers of a deep CNN it is shown that shape information

tends to disappear in the deeper layers while textural information is preserved.

• By training CNNs on self-supervised tasks, it is shown that the texture bias emerges in tasks

other than classification. Thus, the texture bias is not a consequence of textures being useful for

classification. Despite this, ImageNet top-1 classification correlates strongly with texture bias.

• Training ventral visual system inspired CORNets [78] reveals that the texture bias is present even

in architectures that are strongly based on the animal and human visual processing core.

• Training networks with local attention heads [79] instead of convolutions reveals that the texture

bias does not ensue directly from the use of convolutions.

• Center cropping instead of random cropping increases shape bias but worsens classification ac-

curacy.

• Higher learning rates favor shape bias while lower learning rates favor texture bias.

By analysing some of these observations it is possible to conclude that texture bias is a form of

overfitting. Typically, overfitting happens at a data-point level, which can be controlled for with training,

validation and testing dataset splits, and eliminated using regularization and data augmentation tech-

niques. Texture-bias is an overfitting at a dataset level, where the network overfits the low level statistics

of a particular dataset, such as textures and small scale patterns. This overfitting does not happen in

the early stages of training neither when the learning rate is high, but it appears later in the training

with low learning rates. Moreover, regularizing techniques like Random Cropping force the networks to

maximise their capacity by learning the most useful features for the particular task at hand. Since low

level features like textures require less network capacity to encode than high level shape features, if the

low-level features are sufficient to accomplish the particular task, then the network will use its capacity

to encode diverse low-level features rather than specific high level features.

In the next section we will explore a line of research that deals with distributional overfitting and see

different approaches to train networks that generalize better to different datasets/distributions.

2.6 Generalization in Convolutional Neural Networks

In deep learning tasks it is expected that the training and testing data come from the same distribution.

When this is not the case, we are presented with an out-of-distribution (OOD) generalization problem.

This task consists of learning a source distribution and being able to perform inference in a target distri-

bution with different characteristics. This problem can be further decomposed depending on our access

to unlabeled data from the target distribution during training.
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In a Domain Adaptation (DA) framework, a network is trained using the source distribution and its

generalization performance is boosted by taking advantage of unlabeled samples from the target distri-

bution. In a Domain Generalization (DG) framework, only the source distribution is accessible and the

objective is to generalize to any other distribution without any prior knowledge of its nature. Further-

more, each framework can be subdivided into single-source or multi-source scenarios, according to the

number of source distributions that are available during training.

Let us denote Si a dataset of labeled data with a source distribution and Ti a dataset of unlabeled

data with a target distribution. Table 2.2 illustrates the four different scenarios that arise, where the task

is to correctly label samples from Ti:

Framework Training Data Testing Data

Single-source DA S0 ∪ T0 T0
Multi-source DA S0,1,... ∪ T0 T0

Single-source DG S0 T0,1,...
Multi-source DG S0,1,... T0,1,...

Table 2.2: Summary of Out-of-Distribution frameworks.

2.6.1 Domain Adaptation

In the literature, deep domain adaptation techniques can be divided into four categories [80, 81]: dis-

tribution matching approaches, domain adversarial approaches, generative adversarial approaches and

batch normalization based approaches. Most of the covered approaches are of the single-source variant

but most of them can be extended to work in multi-source scenarios.

Distribution Matching Domain Adaptation

Distribution matching approaches include, as part of their loss function, a distance metric between the

source and target latent space distributions. This distance is minimized with the objective of aligning the

latent spaces produced by source and target images when passed through a feature extractor.

Mean Discrepancy Distance (MDD), proposed by [82], measures the distance between the expected

value of the features generated by the source and target distributions. This distance is minimized if the

source and target images produce the same average features.

In [83], the covariance matrices of the features produced by source and target images are compared

with a squared matrix Frobenius norm. This norm is minimized such the features have matching second

order statistics. This idea is extended to higher order central moments in [84].

Furthermore, based on the theory of optimal transport, [85] minimizes a regularized Wasserstein

distance loss to match source and target latent distributions. The Wasserstein distance is replaced by a

learned distance metric in [86] yielding better results.

The previous techniques assume matching source and target conditional distributions with respect to

the label. This hypothesis might not always be true. To address this, the MDD in [82] is further developed
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in [87] by adding a class conditional metric between source and target features. The labels of the target

classes are generated using a k-nearest-neighbours clustering algorithm, with the centers of each class

initialized at the center of the class conditioned source features. Minimizing the learned Contrastive

Domain Discrepancy (CDD) decreases intra-class discrepancy while the increasing inter-class margin.

Adversarial Domain Adaptation

Adversarial domain adaptation adds a domain discriminator to the common CNN architecture. Given a

feature extractor f(x),x ∈ Si ∪ Ti, the domain discriminator head d(f(x)) has the task of finding from

which domain, Si or Ti, the original image x is sampled from. It achieves this by minimizing a cross-

entropy loss Ld between the predictions of d(f(x)) and the true domain. This loss is back-propagated

through a gradient reversal layer between f and d, which reverses the direction of the gradient step for

the feature extractor f . This moves the weights of f in the sense of maximizing the domain discriminator

loss, thus constraining its features to be domain-invariant. Concurrently, a classical cross-entropy clas-

sification loss Lc of a classifier head g(f(x)) is also minimized, without the gradient reversal layer. The

final objective can be expressed as an adversarial min-max game:

min
φ,ψ

max
θ

Ex∈Si∪Ti [Lc(gψ(fφ(x)))− Ld(dθ(fφ(x)))] (2.33)

Where φ, ψ and θ are the learnable parameters of the feature extractor f , classification head g and

domain discriminator d, respectively. This is the basis of domain adversarial neural networks proposed

in [88].

In [89], a domain classifier is also used, but the min-max loss is replaced with a cross-entropy confu-

sion loss applied only to the feature extractor. This confusion loss updates the feature extractor weights

such that the predictions of the domain discriminator are as uniform as possible. At the same time the

discriminator is trained with a classical cross entropy loss. When the features are domain invariant, the

domain discriminator is maximally confused and produces uniform predictions for each domain.

The adversarial domain adaptation approach is generalized in [90] and a novel architecture is pro-

posed. Two feature extractors with partially shared weights are used, one for the source dataset and

one for the target dataset. The training is now performed in two phases. In the first phase the source

feature extractor and classifier are trained with the labeled source dataset. Secondly, the target feature

extracted is trained to produce domain-invariant features with an GAN-style adversarial loss, while freez-

ing the weights of the first feature extractor. During testing, the source classifier is used on top of the

target feature extractor to label images of the target dataset.

Generative Adversarial Domain Adaptation

Generative adversarial approaches make use of generative adversarial networks to achieve domain

adaptation.

The approach of [91] uses two generative adversarial networks with shared weights between the

high level layers of the generators and discriminators. One of the GANs sees and generates images
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from the source distribution while the second sees and generates images from the target distribution.

The coupled GANs learn the joint distribution of the source and target datasets by sharing the high

level latent space. Since the high level representations are shared between domains, a source classifier

trained on top of the discriminator’s last hidden layer will perform well when changing the source GAN

for the target GAN, and thus domain adaptation is achieved.

An encoder-decoder architecture is used in [92]. A classifier is added after the encoder and a cross-

entropy loss is minimized on the labeled source data by adjusting the encoder and classifier weights.

Simultaneously, the target data is passed through the encoder and decoder with the objective of recon-

structing the target images. A pixel-level MSE loss between target and generated images is minimized

by adjusting the weights of the encoder and decoder. Since the encoder is shared between the two

losses, the representations will be focused on the common aspects of the two domains and therefore

the classification of the target domain can be performed using these representations.

The idea of training a classifier on top of a GAN discriminator’s last hidden layer, seen in [91], is

reused in [93]. This time, a single conditional GAN is trained to generate pairs images according to the

source and target distributions using two copies of a noise vector with each domain label appended.

The high level features are regularized to be similar across the pairs of images. During inference the

discriminator is used with the extra classifier on top, which was trained simultaneously.

In [94], a feature extractor produces features for source and target images. A GAN takes the source

and target features as inputs and is optimized to generate images that always resemble the source

images. This forces the feature extractor to produce similar features for source and target images.

Simultaneously, through an alternated update, a classifier is also trained on top of the feature extractor

using the labeled source data. This classifier performs well on target data since the representations are

similar.

Other approaches include using GANs to directly map images from the source distribution to the

target distribution and training a classifier in the mapped source images with the known labels. This

image-to-image task can be achieved using a CycleGAN [69], which uses one GAN for the direct map-

ping, another GAN for the inverse mapping, and a cycle consistency loss between direct and inverse

mappings. Using semantic segmentation labels, [95] achieves even better visual results. However, the

results achieved by the best domain mapping techniques still fall very short of the state-of-the art in-

domain techniques. On the GTAV to Cityscapes domain adaptation instance segmentation task, [95]

achieves a mIoU of 37.43% while the state-of-the-art method training directly on Cityscapes achieves

85.1% [96].

Batch Normalization based Domain Adaptation

Finally, batch normalization based approaches use a single CNN network with batch normalization lay-

ers.

In [97], a CNN with batch normalization layers is trained on the labeled source dataset. At test time,

the learned batch normalization parameters of the network are replaced by those calculated with target

images, by calculating a running average over multiple batches of target images. This procedure aligns
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the inner representations of the target and source distributions.

This idea is extended in [98], where a learned parameter is used to optimize the degree of alignment

between source and target datasets, allowing for different levels of alignment at different depths of the

network.

2.6.2 Domain Generalization

Domain generalization (DG) differs from domain adaptation because no target data is ever used during

the training phase. Instead, the methods focus on finding ways to leverage multi-source labeled data

to generalize to new target domains. In a concrete example, it is expected that a visual perception

module for self-driving vehicles works in any city and weather condition, even if the training dataset does

not include every city, weather condition and their combinations. The module should therefore learn to

generalize to any other scenario.

The single-source domain generalization task is considered to be the worst-case scenario for gener-

alization. With a single domain to train a network there is no way for an algorithm to learn what features

are domain invariant and which ones are domain specific. For instance, if an algorithm is being trained

in a simulated environment, it must learn to generalize to reality from that single domain. This is usually

achieved by introducing stochastic augmentations to the images, which artificially shifts the domain. This

will force a network to generalize across domain shifts and therefore, if the augmentations are properly

chosen, it should be able to generalize to the unknown target domains.

Multi-Source Domain Generalization

A first approach to solve the multi-source DG problem is to simply train a network in all source domains

and hoping that it can generalize to new domains. This is shown to work in [99].

Other approaches use similar techniques to the one used in domain adaptation. For example, [100]

uses a multitask auto-encoder, similar to [92]. There is a single encoder and a decoder for every domain.

The first training phase consists of minimizing all the in-domain and cross-domain L2 reconstruction

errors. A classifier is then added on top of the encoder and trains on all labeled domains. The resulting

encoder-classifier can also classify other new domains since the encoder produces domain invariant

features. In [101], a MDD metric is used to align the feature distribution across every pair of source

domains, achieving domain invariant features.

A different approach [102], based on the meta-learning framework of [103], regularizes the feature

space of a CNN by promoting domain-independent class cohesion and class-specific separation with a

learned distance metric. This method uses a two step update where the first step temporarily updates the

parameters using a classification loss on a meta-training batch. In the second step, a meta-testing batch

is used and the features are regularized with local and global class divergence losses. The gradient is

back-propagated through the two steps to effectively update the model parameters.
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Single-Source Domain Generalization

In [104], single-source generalization is achieved with self-supervised learning by solving jigsaw puz-

zles. The jigsaw puzzles are produced by splitting the images in grid tiles and randomly permuting the

tiles. The network must correctly classify the original images and correctly predict the permutation of the

altered images using the same feature extractor. It is argued that the task of predicting random permu-

tations requires a higher level of abstraction and generalization than simply classifying images because

it requires the understanding of object shape while image classification can be biased towards textures

[75]. This idea is further developed in [105] by randomly shifting the domain of each tile using a fast style

transfer technique [71]. This procedure further impedes the network from using domain specific cues,

like textures, to solve the jigsaw puzzles, and therefore the learned features will be domain invariant.

In [106], besides a standard CNN, an extra Wasserstein Auto-Encoder (WAE) is used to produce

domain shifts of the source dataset. The WAE is pretrained on the source dataset. A two step update

is used where the first step computes the classification loss of the CNN on a batch of images. The

second step alters the input batch adversarially. The second step simultaneously increases the task

loss, without changing the classifier prediction, and increases the reconstruction error of the WAE, while

moving the least possible in the latent representation of the WAE. Finally the weights of the CNN and

WAE are updated using both the unaltered and altered images. This generates challenging domain

shifts that will train the CNN to achieve better generalization results.

Global representations are learned in [107] by penalizing local predictive power using a secondary

shallow network appended to the early layers of a CNN to predict the class label. The penalization is

achieved by reversing the gradient of the secondary network’s loss, in a similar manner to [88].

The method in [108] performs simulation-to-real generalization using a pyramid pooling consistency

loss that assures feature invariance to random image stylizations and crops. When transferring from a

simulated world to a real world, domain randomization can also be performed by artificially tinkering with

the objects, textures and environments in the simulated world, as is done by [109].

A very simple approach [110] performs domain randomization with a single convolution applied to

the source images. The weights of the convolution are sampled randomly from a normal distribution.

A consistency loss based on the Kullback-Liebler (KL) divergence ensures that random variations of

the same image produce similar activations in the feature space, thus promoting domain invariant fea-

tures. This shows that simple domain augmentation techniques may successfully be used to increase

generalization performance.

Relation to this work

A recent massive experiment [111] performed by the Facebook AI Research (FAIR) group tested many

single-source and multi-source domain generalization algorithms and model selection (validation) strate-

gies using the same network architecture across different domain generalization benchmark datasets. It

was concluded that a vanilla empirical risk minimization (ERM) algorithm, when trained with a good data

augmentation strategy can generalize just as well or even better than most algorithms purposely built for
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domain generalization. It was also found that the model selection strategy was far more impactful than

the choice of algorithm. This indicates that the generalization performance is strongly dependent on the

network’s capacity, which can be maximally used with simple data augmentation techniques, suggesting

that the key to achieving good domain generalization results can simply be a good data augmentation

strategy.

This work continues the research effort on domain generalization by randomized domain shifting and

data augmentation. Different forms of random stylization and texturization are explored, which could

potentially be effective in reducing the texture bias of CNNs and improve their effectiveness in domain

generalization tasks.

2.7 Applications in Aeronautics and Space

As was mentioned in section 1.1, some actual efforts are already being put into practice by commercial

aircraft manufacturers to automate certain functions of their aircraft using computer vision models [2].

These models are used to identify lines in the runway and taxiway such that taxi and take-off can be

performed with no pilot input. This kind of approach requires building a dataset by manually labelling the

lines in the images such that a model can be trained to identify them. An alternative would be to train

the model in an aircraft simulator where the images could be labeled automatically. This could speed

up the process but it could also introduce a considerable domain shift between simulator and reality,

which would hinder the performance of the model. Since identifying lines is a rather simple task for a

computer vision model, only a relatively small number of images need to be labeled and therefore a

manual, computer assisted, labeling process is preferred to avoid issues with generalization.

A second, more promising, application of simulator-based learning is in the earth-observation and

defense sectors. An important task in these sectors is the automatic processing of satellite images to

identify bodies of water, cloud formations, to map terrain, identify buildings, roads and runways, vehicles

and even people. Currently, satellite images are processed using deep semantic segmentation models

[112–116], which require large amounts of labeled data to be trained. The labeling process is usually

computer assisted, but still manual. Since this is a segmentation task, every pixel of interest should

be labeled correctly. An alternative would be to train these models with artificially generated satellite

images, where each pixel can be labeled automatically. This would introduce a domain shift, depending

on the quality of the artificially generated images. Having algorithms that are more robust to domain

shifts would greatly improve the reliability of this approach. This would allow the training of satellite image

segmentation models with broader capabilities and better performance, using massive automatically

labeled image datasets. Furthermore, such robust algorithms would also perform better even without

training in a big generated dataset. Since they are robust to domain shifts, they would perform better

across different meteorological conditions, lighting, cameras and overall image condition.

A final application where simulator-based learning will most likely be a key requirement is for manned

urban autonomous aerial vehicles. Such vehicles will have to include complex vision systems that can

detect buildings, trees, other aerial vehicles, birds, cables, bridges and proper landing spaces. Building
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an acceptable dataset to train this kind of visual system is a very difficult task, since multiple aircraft

would have to exist already and be used to capture a very large amount of training data, in multiple

scenarios, with different meteorological conditions. To build a certifiable system, the dataset would also

have to include multiple imminent failure and complete failure scenarios, of the aircraft itself and of other

aircraft, as well as all kind of other perturbations. This is the case with the datasets used to train self-

driving cars. In the case of Tesla, extensive amounts of data, including multiple accident scenarios,

had been collected before a first self-driving prototype was developed. This was only possible because

Tesla had already sold thousands of vehicles, which silently collected data while being driven by their

users. This is not an option for an aerial vehicle since they cannot be sold and used by the mass market

until they are autonomous. Furthermore, aircraft accidents will be far less common, so the training data

for these situations will not exist in abundance. It should now be evident that developing such a vision

system for an aerial vehicle requires a simulator-based approach to collect the necessary data, in all the

required scenarios, such that the vehicle can be certifiable. This would allow the testing of the vision,

the planning and GNC (Guidance, Navigation and Control) systems of the aircraft within a simulated

environment, to ensure the aircraft will always respond in the expected manner in any scenario. The

missing link to this approach is the development of vision algorithms that are truly capable of generalizing

from simulator to reality, ensuring an equal performance in both domains while only being trained in the

simulated environment.

Other applications of computer vision in the aerospace sector might also benefit from an increased

robustness and better generalization performance of neural networks.

One example is the quality control of aircraft and spacecraft structural components. Techniques

such as Automatic Fiber Placement (AFP) [117] are being adopted as a fast and efficient method to

build large structural components out of carbon fiber. These techniques often lead to defects such as

wrinkles, undesired fiber tension and compression [118]. These process-induced defects often create

uncertainty in the mechanical performance of the resulting components. This requires the process to be

supervised so that the fiber placement can be corrected when defects appear. This process is usually

performed by experts and is often time consuming. A good solution to this problem is to use machine

learning and computer vision techniques to perform rapid inspection of the carbon-fiber sections while

they are being built, so that they can be automatically corrected [119, 120].

UAV (Unmanned Aerial Vehicle) operations will also benefit from an increase in the robustness of

computer vision algorithms that may be used to automate certain functions of the aircraft [121, 122]. As

an example, UAV navigation can be performed using computer vision algorithms [123], by identifying

landmarks and using them as a guidance mechanism. High-definition images are used as way-points.

The UAVs identify these way-points during flight and use them to perform course corrections. Another

example is the use of UAVs for urban search and rescue missions [124]. Navigating through disaster

struck environments is a challenging problem since no accurate mapping of the environment exists. This

requires the problem to be solved using computer visions algorithms which capture the 3D geometry of

the environments so that a drone can safely navigate through them and safely land on areas full of debris.

These application of computer vision to UAV operations require algorithms to be extremely robust before
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they can be relied upon.

All these examples show the importance of simulator-based learning and of developing robust al-

gorithms that can generalize across domains. These algorithms will be of extreme importance in the

upcoming years to solve multiple problems in the aeronautical and space sectors.
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Chapter 3

Domain Shifting Experiments

3.1 Domain Randomization via Style Transfer

The first proposed approach to achieve randomized domain shifts is by adapting the style transfer tech-

nique described in section 2.4.5. We start by analysing the baseline technique as described in [71]. We

follow by analysing the different steps required to train a random stylization network without the need for

a style dataset.

3.1.1 AdaIN Baseline

The baseline method achieves considerably great results, with overall good reconstruction, color match-

ing, and pattern transfer, as seen in Figure 3.1.

Figure 3.1: Baseline style transfer examples. Content images in the first column. Unaltered image
reconstruction in second column. Style images and respective stylised images in the following columns.
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The pretrained baseline method can be used as-is to produce random stylizations of content images

without the need to input a style image, as was demonstrated in [125].

In the baseline method, the style images are introduced by calculating their values of µc and σc, the

mean and standard deviations of each feature map in the last layer of the encoder, and applying them

to the content image using AdaIN. Those values of µc and σc can be replaced by random values hence

creating the novel styles in Figure 3.2. These values are sampled randomly from normal distributions

µc ∼ N (0, 1) and σc ∼ N (1, 1). Even though negative values for σc would not naturally appear, the

AdaIN algorithm can make use of them just as well. Results of random stylization can be seen in Figure

3.2.

The problem of using this approach is that the stylizations are biased towards the style dataset

on which the network was trained, in this case, paintings from the Wikiart. The network decoder has

learned to generate images that have the style of those paintings and therefore cannot produce images

with different statistics and different kinds of textures.

Figure 3.2: Random style transfer examples. Content images in the first column. Unaltered image
reconstruction in second column. Randomly stylised images in the following columns.

3.1.2 Covariance Adapter

The introduction of random values for µc and σc assumes that the distribution of the feature maps pro-

duced by the encoder is known. The sampling distributions of µc and σc should be the same as the

distributions expected when passing a style image through the decoder. To test this constraint, his-

tograms of the feature maps are produced, permitting the analysis of the distributions generated by the

encoder on a single image:

Baseline

The distributions of the feature maps are plotted for two different images, the first one with a high diversity

of textures and colors, the second with a single almost homogeneous texture. See Figure 3.3.

It is noticeable that, due to the ReLU layer at the end of the encoder, all feature map activations are
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Figure 3.3: Histograms produced by the baseline encoder. a) Style Images; b) 1000 Bin Histogram of
φsc(i, j); c) 100 Bin Histogram of µc(φsc); d) 100 Bin Histogram of σc(φsc);

positive, creating a strong peak at 0. This might not pose any problems but, since we want to create a

latent space of styles, parameterized by µc ∼ N (0, 1) and σc ∼ N (1, 1), another experience is performed

by removing the last ReLU layer of the encoder network.

Baseline without ReLU

The histograms produced by the encoder without the last ReLU layer are much more bell-like, and so,

the distributions of the feature maps are closer in shape to the target distributions of µc ∼ N (0, 1) and

σc ∼ N (1, 1). See Figure 3.4. As expected, a more diverse painting will generate a bigger variance in

the feature maps. From now on, all experiences will be made without the last ReLU layer of the encoder

unless otherwise specified.

Figure 3.4: Histograms produced by the baseline encoder without the last ReLu layer. a) Style Images;
b) 1000 Bin Histogram of φsc(i, j); c) 100 Bin Histogram of µc(φsc); d) 100 Bin Histogram of σc(φsc);
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Naive Adapter

In the next step we want to make sure that each feature map has a distribution with mean and variance

as close as possible to 0 and 1 respectively. Normally one would achieve this by normalizing the feature

maps with either instance normalization or batch normalization. The problem with instance normalization

is that it renders the following Adaptive Instance Normalization completely useless since all content and

style features will be normalized already and no style transfer would happen. Batch normalization would

work but it introduces a lot of noise at low batch sizes since the feature map statistics would now be

dependent on the other images in the batch. The proposed solution is to cap the encoder with a single

convolutional layer adapter with a 1x1 kernel. This is equivalent to performing a linear transformation of

the feature maps with learned weights. The outputs of the adapter are constrained to have mean and

variance as close as possible to 0 and 1 with a KL divergence loss. Contrary to the other methods, this

will keep the information in the statistics of the feature maps without introducing noise. Assuming that

the feature maps are normally distributed, the loss of the adapter is given by:

La =
1

C

C∑
c

DKL(N (µc, σc) || N (0, 1)) =
1

C

C∑
c

1

2
(σ2
c + µ2

c − ln(σ2
c )− 1) (3.1)

This loss is minimal when the two normal distributions have the same parameters. This might seem

like a good solution, however, there is no guarantee that the feature maps produced by the adapter

are independent. It is entirely possible that the adapter produces multiple copies of the same feature

map, with a very poorly conditioned linear transformation. The next experiment solves this issue by

constraining the covariance matrix between channels of the feature maps to be close to the identity

matrix.

Covariance Adapter

This covariance matrix is commonly called the Gram matrix G of the feature maps [49] and has dimen-

sions c× c:

Gc′c =

H∑
i

W∑
j

φc′(i, j)φc(i, j) (3.2)

A mean squared error term between the Gram matrix and the identity is added to the previous

adapter loss.

La =
1

2C

C∑
c

(σ2
c + µ2

c − ln(σ2
c )− 1) +

1

C2

C∑
c′

C∑
c

(Gc′c − Ic′c)2 (3.3)

The results are show in Figure 3.5.

Although not noticeable in the results, this produces feature maps that are sure to be as orthogonal

as possible from each other. We are therefore able to introduce the parameters µc and σC from an i.i.d.

normal distribution. The next section will show the results of this procedure.
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Figure 3.5: Histograms produced by the encoder followed by a KL divergence + Gram matrix adapter.
a) Style Images; b) 1000 Bin Histogram of φsc(i, j); c) 100 Bin Histogram of µc(φsc); d) 100 Bin Histogram
of σc(φsc);

3.1.3 AdaIN + Adapter trained with style dataset

When training the full style transfer model we have the option of training the adapter first and then the

decoder, or to train them both simultaneously. The first two experiments will test these two options with

the full multi-layered style loss. The third experiment will have a style loss that is only calculated in

the last layer. This is because, in the following experiments, where the style dataset is replaced by the

random values of µc and σc, there is no style image to produce the middle encoder activations and the

loss is calculated only with the parameters µc and σc directly.

Adapter and Decoder trained separately

Training the adapter and decoder separately allows the adapter to produce feature maps as uncorrelated

as possible without interference from the decoder. The results are quite similar to the original method.

Reconstruction artifacts are visible, which shows that this type of adapter isn’t ideal. Figure 3.6 shows

examples of style transfer and Figure 3.7 shows examples of random stylization using this technique.

The adapter was trained for 15k iterations and the decoder for 65k iterations.

Adapter and Decoder trained together

Training the adapter and decoder together makes both networks compete to achieve both of their objec-

tives. The independence of the feature maps is therefore worst. The big advantage with this approach

is that it allows the training to happen in a single session. Figure 3.8 and Figure 3.9 show examples of

style transfer and random stylization after 85k iterations.

The reconstruction is still lacking in detail. The patterns produced are slightly different than those

produced when training separately. It is considered that training the adapter and decoder together

poses no significant detriment to the results when compared with the separate training approach.
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Figure 3.6: Style Transfer Examples with an adapter and decoder trained separately.

Figure 3.7: Random Style Examples with an adapter and decoder trained separately. The first column
contains the input image (top) and reconstructed image (bottom).

Last Layer Loss Only

To simulate the use of random parameters µc and σc, the following experiment is performed while calcu-

lating the style loss on the last layer only. Examples of style transfer are shown in Figure 3.10

The generated images are of similar quality to the original method in Figure 3.1. There is a slight

colour shift and the transferred patterns are slightly smaller in scale. It is concluded that using only the

last layer to calculate the style loss should not pose any major quality problems when training without a

style dataset.
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Figure 3.8: Style Transfer Examples with an adapter and decoder trained together.

Figure 3.9: Random Style Examples with an adapter and decoder trained together. The first column
contains the input image (top) and reconstructed image (bottom).

3.1.4 AdaIN + Adapter trained without style dataset

We are now prepared to train the full stylization network, with an adapter after the encoder, random µc

and σc parameters and a last layer style loss. The results are shown in Figure 3.11 and Figure 3.12.

The reconstruction is almost perfect besides the color shift. The major problem is the pattern transfer

and generation. Both style transfer and random style images are subject to a colour shift, with only very

small scale patterns being generated.
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Figure 3.10: Style Transfer Examples with last layer style loss only. Trained for 50k iterations.

Figure 3.11: Style Transfer Examples. Trained without style dataset for 105k iterations.

3.1.5 Adaptive Instance Normalization Conclusions

The previous experiments have shown that a great diversity of styles can be achieved when training

the style transfer network with a style dataset. This diversity is preserved when a feature adapter is

introduced and the style loss is only calculated in the last layer.

This is not the case when the network is trained without a style dataset, only minor small-scale

patterns are transferred and the random stylization only affects the color balance of the images, without

great diversity and barely any created patterns. We are forced to conclude that the emergence of
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Figure 3.12: Random Style Examples. Trained without style dataset for 105k iterations.

complex patterns is a result of using a style dataset. The high level feature correlations cannot be

captured with independently varying normal distributions of parameters.

An auxiliary network that generates the parameters µc and σc from a lower dimensional noise was

also tested. This network induces more correlations between these parameters but it still isn’t capable

of generating the specific patterns seen in common style transfer methods that use a style dataset.

When training with a style dataset, the decoder network learns to generate patterns like brushstrokes,

lines and curves, because those are very prominent in the style dataset. These complex patterns can be

considered ”high-level” patterns, which can only occur with specific feature map correlations. Therefore,

when training without a style dataset, these correlations are very unlikely and the complex patterns never

form. Only ”low-level” homogeneous patterns like colour and small scale features will ever form. Like

electrons filling the orbitals of an atom, the low energy states are filled first. It is possible that increasing

the model capacity may open the door to more complex patterns, although, it is suspected that the width

of the model varies exponentially with pattern complexity. Thus, the creation of complex patterns would

require a prohibitively big network. This network would have to generate all the less complex patterns

before being able to produce more complex patterns. This approach is therefore deemed inappropriate

for random high level stylization. It could nonetheless still be useful as a data augmentation tool since it

is able to generate multiple differently textured versions of the same image.

3.2 Encoder-Transformer-Decoder Networks

Ideally, a random stylization method should be able to reconstruct the input image with a high degree of

fidelity when no noise is introduced in the auto-encoder network. The AdaIN stylization method achieves

this when the same image is used for content and style, as seen in Figure 3.1, second column. The

problem with the AdaIN stylization method is that it requires a big network, usually a VGG16, and the

respective mirrored decoder. Furthermore, the styles that it produces are heavily conditioned on the

style dataset that it is trained on, and are therefore not general. A data augmentation method should
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be lightweight enough to not cause a considerable computational overhead on the main method. It

should also be as general as possible, in a sense that, it should produce all possible variations of the

transformation that it applies.

With these considerations in mind, a different approach is therefore devised where a simple convolu-

tional auto-encoder is used to learn a latent representation of the textures in an image. The auto-encoder

has no information bottleneck. Instead an encoder converts spatial information into channel-wise infor-

mation using down-sampling with strided convolutions. This means that each pixel in the latent feature

maps encodes the texture of a patch in the input image. A decoder based on transposed convolutions

is then tasked with reconstructing the input image. A Mean Squared Error (MSE) reconstruction loss

is used between the input and output images. An extra KL Divergence loss is used in the latent space

to softly constrain the representations to have µ = 0 and σ = 1. The encoder and decoder can have

2 to 4 layers each, depending on how wide we want the texture patches to be and how non-linear we

want the transformation to be. The auto-encoder is trained on a set of content images using these two

losses. Since there is no information bottleneck, the auto-encoder should be able to perfectly reproduce

the input images and have an MSE loss that tends to 0.

The purpose of the encoder-decoder architecture is not to compress the information of the images. It

is rather to encode the images into a texture-space, where they are transformed and then decoded back.

Therefore the total volume (C×W ×H) of the feature maps should remain constant at every layer of the

encoder. When a down-sampling is performed, the number of channels should increase by the same

ratio i.e. dividing the resolution by 3 in height and width, should be accompanied by a 9 times increase

in channel number. The information is therefore encoded channel wise and not pixel wise, creating the

aforementioned texture-space.

To perform randomized texturing of images the auto-encoder is frozen and a transformation is intro-

duced in the latent space. The full architecture, presented in Figure 3.13, consists of an encoder E, a

transformation T that introduces the noise in the feature maps created by the encoder, and a decoder

D that generates the transformed images.

The key element of this architecture is the choice of transformation T , which is responsible for intro-

ducing the noise vector z in a meaningful manner. The influence of z on the output feature maps should

be similar to that of the input feature maps. This roughly means that
∣∣∣∣∂T
∂z

∣∣∣∣
∞ and

∣∣∣∣∣∣∂T∂φ ∣∣∣∣∣∣∞ should have

the same order of magnitude. To induce a great variety of styles, the components of ∂T∂z should also be

as orthogonal as possible, meaning that, each component of z affects the output in a different manner.

3.2.1 Formalization

Let x̂ = F (x, z) be a function Ωs×cx × Rn → Ωs×cx , where s represents a spatial dimension, c represents

a channel dimension, n represents a noise dimension and Ωx ⊂ R is the support of the values of x and

x̂. The function F (x, z) is the composition of an encoder y = E(x), a transformation ŷ = T (y, z) and a

decoder x̂ = D(ŷ) with y ∈ Ωs
′×c′
y and ŷ ∈ Ωs

′×c′
y , where Ωy ⊂ R is the support of the values of y and ŷ.

The encoder E encodes the information contained in the spatial dimension into the channel dimension
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Figure 3.13: Encoder-Transformer-Decoder architecture. During training, the Encoder (E) and Decoder
(D) are trained together, using the MSE Loss and a KL Divergence regularizer. At inference time, a
Transformer (T) transforms the latent space, according to a noise vector z, before decoding the image.

and the decoder D decodes the information from the channel dimension back into the spatial dimension.

We have therefore s′ < s and c′ > c. To ensure that no information bottleneck exists we set s′ and c′

such that s′ × c′ = s× c.

Let the encoder and decoder be the inversion of each other when the transformation is bypassed,

which is the case when the auto-encoder is fully trained:

D(E(x)) = x, ∀x ∈ Ωs×cx (3.4)

Since both the encoder and decoder are invertible, they must be bijective. Furthermore, Ωx and Ωy

are isomorphic to each other. When the transformation T (y, z) is introduced, if the transformation is

bijective for any given z, then the function F (x, z) must also be bijective for any given z. This means that

all the spatial information in x must be encoded in y, ŷ and x̂, for a known z.

The input x can be thought of as any type of single or multi-channel data with temporal or spatial

components (pixels) with a certain distribution x ∼ X. Typically in natural data, the intrinsic dimension-

ality of this data is far lower than the total possible dimensionality of X. This means that the probability

density of X is zero almost everywhere. A domain expansion consists of producing a distribution X̂ with

a bigger intrinsic dimension than the original distribution X.

Consider that T (y, z) is a per-pixel transformation Ti(y, z) = t(yi, z). We want the transformation t

to map a given pixel vector of y, notated yi ∈ Ωc
′

y , to any other given pixel vector ŷi ∈ Ωc
′

y , for a certain

value of z. More concretely:

∀yi∀ŷi∃z : t(yi, z) = ŷi (3.5)
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This operation effectively maximises the intrinsic channel-wise dimensionality of ŷ ∼ Ŷ and therefore,

since D is bijective, the dimensionality of X̂ is also increased. This condition may be relaxed to decrease

the degree of variation of the outputs while still ensuring a domain expansion:

∀yi∀ŷi ∈ Bε(yi)∃z : t(yi, z) = ŷi (3.6)

where Bε(yi) denotes a ball of radius ε around yi and ε controls the magnitude of variation of the outputs.

The distribution Z of z and the choice of transformation t will define the diversity observed in the

outputs of F (x, z). A first choice of t might be a simple translation:

t(yi, z) = yi + z (3.7)

If z ∼ Z comes from an uniform distribution Z = UBε(0) then this transformation satisfies the relaxed

condition for the maximisation of the dimensionality of ŷ. If z is sampled from a normal distribution,

Z = N (µ, σ), then the transformation satisfies the first unrelaxed condition for the maximisation of the

channel-wise dimensionality.

Some of the spatial information of the input is encoded in the channels of y. Transforming y into ŷ with

an increase in dimensionality, results in increasing the dimensionality of this spatial information. When

the generating the output x̂, this will create not only a diversity in each pixel but also a diversity in the

inter-pixel relationships. In the case of images, the generated images will suffer not only a diversification

of color, but also of texture, according to z. The maximisation of the channel-wise dimensionality ensures

that an image patch can be transformed to every possible texture with non-zero probability.

A second option for the transformation t could be a rotation in the texture space. This transformation

is parameterized by a orthogonal matrix z ∈ Rc′×c′ :

t(yi, z) = zyi (3.8)

This transformation does not satisfy the first non-relaxed condition to have a domain expansion be-

cause during a rotation, the points are kept at a fixed distance from the origin and therefore not every

point can be mapped to every other point. The combination of a rotation with a translation however does

satisfy the condition. The advantage of the rotation transformation is that it can transform any texture

into any other texture, at the same distance from the origin in texture space, with equal probability.

To construct the rotation matrix, we start by sampling the values of z from a standard normal distri-

bution. To ensure that t is bijective for any z, z needs to be a non-singular matrix. This happens on a set

with measure 0 so in theory there is no need to introduce a constraint. In practice, we would like to also

preserve the orthogonality of features. This means that features that are dissimilar (orthogonal) should

be kept dissimilar, so as to not collapse the feature space. The matrix z should thus be constrained to an

orthogonal matrix. This can be achieved through an orthogonalization algorithm like the Grand-Schmidt

process (QR decomposition), Householder transformation, a Singular Value Decomposition, or a spec-

tral algorithm like Björck’s iterative singular value normalization. We chose the QR decomposition as it is
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fast to compute and does not involve iterative processes. The matrix z is therefore the result of a random

sampling from a normal distribution followed by a QR decomposition which renders it orthogonal.

A third option for the transformation t involves an adaptive normalization of the features, with z =

[z1, z2] and z1, z2 ∈ Rc′ . This transformation is applied pixel-wise but depends on the statistics of the

other pixels of y:

t(yi, y, z) =
yi − µ(y)

σ(y)
· z1 + z2 (3.9)

where µ and σ are the per-channel means and variances of y. Once again, the non-relaxed condition is

satisfied for any y with z normally distributed, therefore this approach maximises the dimensionality of Ŷ

and increases that of X̂. This approach is more closely related to the common method of style transfer

seen in the literature.

Any of these channel-wise transformations performs image texturizations that are uniform in space.

If we wish to add more textural variety space-wise, an additional noise component can be sampled from

a normal distribution and added to each pixel and channel individually.

3.2.2 Encoder-Transformer-Decoder Experiments

The following experiments showcase the type of randomized texturizations that is possible to obtain with

the previously mentioned techniques. The encoder has 2 convolutional layers (C) with a Hyperbolic

Tangent (Tanh) activation in between. The decoder has 2 transposed convolutional layers (TC) with the

same activation in between. The architecture is summarized in Table 3.1.

Layer Channels In Channels Out Kernel Size Stride Padding Activation

Encoder C0 3 27 3× 3 3 1 Tanh

Encoder C1 27 243 3× 3 3 1 None

Decoder TC0 243 27 3× 3 3 1 Tanh

Decoder TC1 27 3 3× 3 3 1 None

Table 3.1: Architecture of the Auto-Encoder for random texturization.

This Auto-Encoder is trained on the MS-COCO dataset for 25000 iterations with a batch size of

16 and a learning rate of 1 × 10−4 with Pytorch’s default ADAM optimizer. All images are resized to

505 × 505 pixels during training. The latent feature maps have 243 channels and 57 × 57 resolution (

((505+2)/3+2)/3 ). The two convolutions with a stride of 3 generate latent representations that encode

the texture in a 9× 9 patch.

Once the Auto-Encoder is fully trained, it is frozen and the transformation module is inserted in

between the encoder and decoder networks. At test time, the latent feature maps are altered by the

transformation module. The final feature maps are a linear interpolation between the unaltered and

altered feature maps, parameterized by a coefficient α. When α = 0 the image is unaltered, when α = 1

the image is fully altered, and for values between 0 and 1 the image is the result of the interpolation.
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Translation

The translation is implemented by sampling a 243-dimensional noise vector z from a normal distribution

N (µ = 0, σ = 0.5) and adding it to each of the pixels of the feature maps. The results for random

samples of z are presented in Figure 3.14.

Figure 3.14: Images randomly textured by the Encoder-Transformer-Decoder architecture with transla-
tion. First row: reconstructed image and input image. Second row with α = 0.3, third row with α = 0.6
and final row with α = 1.0.

To add more diversity across space, a noise tensor of the same dimensions as the latent feature

maps is sampled from a normal distribution with a smaller variance N (µ = 0, σ = 0.1) and added to

feature maps component-wise. This introduces more spatial variation, as seen in Figure 3.15.

Rotation

The rotation module is implemented by first generating a 243 × 243 matrix with components sampled

from a normal distribution N (µ = 0, σ = 1). This matrix is then subject to a Grand-Schmidt process (QR

decomposition) which factorizes the matrix into an orthonormal matrix Q and an upper triangular matrix

R. All the 243-dimensional pixel vectors of the latent feature maps are transformed using the orthogonal

matrix Q, essentially rotating the feature maps in this 243-dimensional feature-space. Since the channel

dimension represents different textures, this procedure can be interpreted as a rotation in the space of

all possible textures per image patch. The results of this procedure are displayed in Figure 3.16.

Additionally, we can increase the spatial diversity by introducing component-wise noise in the feature

maps, as before. The results are presented in Figure 3.17.
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Figure 3.15: Images randomly textured by the Encoder-Transformer-Decoder architecture with transla-
tion and feature noise. First row: reconstructed image and input image. Second row with α = 0.3, third
row with α = 0.6 and final row with α = 1.0.

Figure 3.16: Images randomly textured by the Encoder-Transformer-Decoder architecture with rotation.
First row: reconstructed image and input image. Second row with α = 0.3, third row with α = 0.6 and
final row with α = 1.0.

AdaIN Transformation

This implementation uses the same adaptive instance normalization technique as the AdaIN stylization

method. [71]. This is essentially the same architecture as the random instance normalization procedure

that was covered before, but this time the encoder is trained from scratch. The µ and σ for each channel

are sampled from gaussian distributions µc ∼ N (µ = 0, σ = 0.3) and σc ∼ N (µ = 1, σ = 0.1). The
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Figure 3.17: Images randomly textured by the Encoder-Transformer-Decoder architecture with rotation
and feature noise. First row: reconstructed image and input image. Second row with α = 0.3, third row
with α = 0.6 and final row with α = 1.0.

results are presented in Figure 3.18.

Figure 3.18: Images randomly textured by the Encoder-Transformer-Decoder architecture with AdaIN.
First row: reconstructed image and input image. Second row with α = 0.3, third row with α = 0.6 and
final row with α = 1.0.

Yet again, adding a component-wise noise to the feature maps increases the spatial diversity of

the images. This solves a problem with the AdaIN method, where textureless regions of the input

image produces textureless regions in the output image. This happens because a convolution operation

applied to a flat image will allays produce another flat image. In R, a convolution of a kernel k(t)
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applied to a constant function f(t) = a will produce the integral of the kernel multiplied by a, which is

constant. All consequent feature maps are therefore flat. The introduction of pixel-wise noise, even in

small magnitude compared to µ and σ, is enough to generate more prominent patterns in the output

image. This is noticeable in Figure 3.19.

Figure 3.19: Images randomly textured by the Encoder-Transformer-Decoder architecture with AdaIN
and feature noise. First row: reconstructed image and input image. Second row with α = 0.3, third row
with α = 0.6 and final row with α = 1.0.

Combinations

Finally, it is possible to combine multiple of these transformations to generate even more kinds of tex-

turizations. While every transformation can theoretically generate all possible textures, they do so with

different probability distributions. A translation will transform the textures by slightly altering them in a

neighbourhood of the original texture, with more probability the closest it is to the original. A rotation

will map a texture to any other texture, at the same distance from the origin, with equal probability and

therefore generates more extreme and seemingly random texturizations. The AdaIN transformation will

map one texture to another with a probability that is dependant on the relation of the input texture to

the mean and variance of the latent feature maps. Therefore combining different transformations will

generate texturizations with different probability distributions.

Combining a translation with AdaIN results in an equivalent transformation to AdaIN so it will not be

explored. Figure 3.20 shows the results of performing a rotation followed by a translation and adding a

component-wise noise. In Figure 3.21 a rotation is followed by an AdaIN transformation.
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Figure 3.20: Images randomly textured by the Encoder-Transformer-Decoder architecture with rotation,
translation and feature noise. First row: reconstructed image and input image. Second row with α = 0.3,
third row with α = 0.6 and final row with α = 1.0.

Figure 3.21: Images randomly textured by the Encoder-Transformer-Decoder architecture with AdaIN,
translation and feature noise. First row: reconstructed image and input image. Second row with α = 0.3,
third row with α = 0.6 and final row with α = 1.0.

Encoder-Transformer-Decoder Conclusions

Since this method is based on a simple auto-encoder with no bottleneck, the reconstruction of the

images with no noise introduced is very close to perfect, as can be noticed in the top left image of each

Figure. This means that the transformations can be controlled with the coefficient α and produce only

very slight changes in the image. This makes α a good hyper-parameter to tune when performing other
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experiments with the texturized images.

The three transformation types and their combinations all produce convincing and usable randomized

texturizations. The translation in channel-space is useful when we need a domain expansion that is

centered around the original domain. The rotation in channel-space is useful when we need to cover

all possible texturizations with equal probability without loosing the orthogonality of the features and the

information in the input image. The AdaIN transformation is useful when we need a domain expansion

that is not necessarily centered in the original domain and covers a wide spectrum of textures while

keeping the orientation of the representations the same and therefore keeping more of the visible content

from the input image.

The main caveat with this architecture is the fact that it transforms the images by patch. The space

of possible textures is defined as the space of all possible square patches of a chosen size. A texture

is not necessarily encoded in square tiles and it is not necessarily periodic in space. Therefore a good

texturization method should not be based on square patches. This generates textures that have a

characteristic periodicity to the human eye.

However, this technique is meant as a data augmentation tool for further CNN training. Since most

CNNs process the images in the same square-like periodic manner, it is considered that this method is

suited to augment images that will later be processed by a CNN.

3.3 Randomized Domain Shifting Conclusions

In purely visual and stylistic terms, the randomized styles produced by the AdaIN style transfer based

method, when trained on a style dataset, are by far the most pleasing. Nevertheless, this technique

suffers from the lack of generality that comes with training the decoder on a style dataset. The styles

that are produced are thus constrained by the style dataset and do not cover all possible textures.

Adapting this technique to forgo the need of a style dataset produces far less impressive results. The

results do not justify the use of a big VGG16 encoder and corresponding decoder.

When compared to the randomized AdaIN style transfer technique, the Encoder-Transformer-Decoder

method is much simpler and far less computationally intensive. Further, it is not limited by a style dataset

to generate novel textures and is therefore more general. It lacks in visual neatness to the human eye

because of the patch based nature of the architecture but this might not be a problem for CNNs. This

approach will therefore be tested as a data augmentation tool in various scenarios in the following sec-

tions.
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Chapter 4

Domain Generalization Experiments

In this chapter we shall test the generalization performance of networks that are trained using the

Encoder-Transformer-Decoder architecture for image domain augmentation. The generalization perfor-

mance will be assessed in the standard setting for Domain Generalization (DG) experiments, described

in section 2.6.2. The networks will be trained on a dataset of a specific domain and then tested in a

second dataset of a different domain, that was not seen during training. The generalization performance

is compared between networks by measuring the performance on the novel testing set.

In section 4.1, we measure how the ETD architecture affects the texture bias of a CNN, by testing

it in a mixed-cue dataset. In section 4.2, we compare, in a semantic segmentation task, the baseline

network training against our augmentation technique with the same main network architecture, on the

same datasets and with the same training conditions. In section 4.3 we perform the same comparison

in an object detection task.

4.1 Texture Bias Experiments

In this chapter we shall test the texture-bias of networks that are trained using the Encoder-Transformer-

Decoder domain-shifting technique, using a similar approach to [75]. The objective of this experiment is

to show that training a network with randomly textured images reduces the texture-bias of the network,

when compared to vanilla training. The texture-bias is assessed using a mixed-cue dataset, generated

using the STL10 dataset [126, 127] and the AdaIN-based fast style transfer algorithm [71]. We perform

style transfer with the content image of one category and the style image of another. We test networks

with standard training against networks trained with randomized domain shifted images and test them

with this mixed-cue dataset. Within the network responses that correspond to either the correct style or

correct content category, the texture bias is the percentage of predictions that correspond to the correct

style category.
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4.1.1 Experiment Description

Dataset

This experiment is performed on the STL10 dataset. This dataset contains 10 classes of objects with

500 training images and 800 testing images per class, at a resolution of 96× 96. The image categories

are, in the following order: airplane, bird, car, cat, deer, dog, horse, monkey, ship, truck.

The original dataset has two splits, one for training with 5000 images and one for testing with 8000

images. We further randomly split the training set into a training subset with 4000 images and validation

subset with 1000 images. We also split the testing set into 4000 content images and 4000 style images

to generate 4000 mixed-cue images on which the networks are tested.

Domain Randomizer Architecture

We use the same encoder and decoder that was described in section 3.2.2, in table 3.1. The Auto-

Encoder is trained on the MS-COCO dataset for 25000 iterations with a batch size of 16 and a learning

rate of 1× 10−4 with Pytorch’s default ADAM optimizer.

A translation transformation is applied in between the encoder and decoder. The standard deviation

of the 243 dimensional vector is set to a variable parameter σ and the standard deviation of the noise

tensor is set to σ/2. The parameter σ controls the intensity of the transformation and is varied to test

different texturization strengths. The following values of σ are tested: σ ∈ {0.05, 0.1, 0.2, 0.3, 0.5}.

We show examples of the texturization applied to the STL10 dataset in Figure 4.1.

Figure 4.1: Examples from the STL10 dataset with a random texturization applied. Each column repre-
sents one class in the following order: bird, car, cat, deer, dog, plane, ship, truck. These images were
used for training the networks.

Network Architecture

We perform the tests using Pytorch’s implementation of a ResNet-34, which has an initial 7 × 7 strided

convolutional layer, followed by 32 convolutional layers divided into 16 residual blocks and capped with a
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fully connected classifier layer. The classifier layer is altered to have 10 output neurons, corresponding

to the 10 classes of STL10. The network is initialized with the weights from pre-training on ImageNet.

Training Details

The baseline training session uses no image augmentation technique. The network is trained for 100

epochs with a batch size of 16. The optimizer is Pytorch’s standard SGD with learning rate 1 × 10−4

and 0.9 of momentum. After each epoch, the network is evaluated on the validation subset. The best

performing network in the validation subset over the 100 epochs is kept for the testing phase.

In the following training sessions, the network is reinitialized and trained using the images generated

by random texturization, with a different values of σ each time. The same training parameters and

procedure are used. Each configuration is ran 3 times to produce the mean and standard deviation of

the results.

Style Transfer Architecture

The style transfer architecture is the same used in [71]. The encoder consists of the 9 first convolutional

layer of a VGG16. The decoder is a mirrored version of the decoder where the 2 × 2 max-pooling

layers are replaced by 2 times up-sampling layers. We use the pre-trained style transfer network weights

available online [128]. We show examples of the mixed-cue STL10 images generated by this architecture

in Figure 4.2.

Figure 4.2: Examples of style transfer between different classes of STL10. Top row: content images,
Middle row: style images, Bottom row: resulting images. These images were used to evaluate the
networks.

Metrics

We evaluate the performance and texture bias of the final trained network by constructing a 10× 10× 10

confusion tensor C = [Cijk], where each entrance corresponds to the number of times the network

predicted a class k when shown a stylized image with content category i and style category j.
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The overall Texture Bias is calculated as the correct texture decisions over the correct texture deci-

sions plus the correct content decisions:

TB =

∑
i,j,k|j=k Cijk∑

i,j,k|j=k Cijk +
∑
i,j,k|i=k Cijk

(4.1)

where the notation
∑
i,j,k|j=k means the sum over indexes i, j, k such that j = k.

Content Accuracy is measured as the fraction of correct content decision (i = k):

CA =

∑
i,j,k|i=k Cijk∑
i,j,k Cijk

(4.2)

Texture Accuracy is calculated as the fraction of correct style decision (j = k):

TA =

∑
i,j,k|j=k Cijk∑
i,j,k Cijk

(4.3)

Finally, Class-specific Texture Bias is the Texture Bias constrained to a content class (i):

CTBi =

∑
j,k|j=k Cijk∑

j,k|j=k Cijk +
∑
j,k|k=i Cijk

(4.4)

4.1.2 Results

Figure 4.3 shows the mean values of the Texture Bias (TB), Content Accuracy (CA) and Texture Accuracy

(TA) while varying the values of the texturization strength σ. The value σ = 0 corresponds to the baseline

network that was trained without the domain randomizer. The shaded region represents the area within

one standard deviation of the mean.

Figure 4.3: Texture Bias (TB), Content Accuracy (CA) and Texture Accuracy (TA) while varying the
values of the texturization strength σ, averaged over three runs. Shaded region represents one standard
deviation from the mean.
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A clear optimal value for the texturization strength σ = 0.2 simultaneously minimizes the texture bias

and maximises the content accuracy in the mixed-cue dataset. This optimal value is specific to this task

and network architecture, meaning that, further implementations of this texturization method, in different

contexts, should be adapted to the scenario in question.

It is also noticeable that the texturization strength has a big impact in the network performance. If

the value of σ is too large the network will start underfitting both the content and style images. And no

advantage is gained. The process of optimizing the texturization strength to the task at hand is therefore

crucial. In case of doubt or limited resources, if the network is not already underfitting, a lower value of

σ is sure to improve performance, acting as data augmentation, while a high value of σ may negatively

affect performance.

In general, it is observed that increasing σ always renders the network more less texture sensitive,

since the texture accuracy is monotonously decreasing. Even though we search to train texture invariant

networks, the textural information may still be necessary to achieve good results in a particular task and

therefore the content accuracy drops when the texture invariance becomes too strong (indicated by a

low texture accuracy).

Figure 4.4 shows the comparison of Class-specific Texture Bias (CTB) between standard training and

training with textured images. All classes in the STL10 dataset are learned with a smaller texture bias

when textured images are used during training. The results for the classes ”horse” and ”cat” are unclear

since they fall within one standard deviation around the mean. In general, the results indicate that training

with textured images successfully renders the network more texture invariant, across classes, since the

network is more capable of correctly classifying an image with texture cue conflicts. The network is

therefore more capable of ignoring the low level statistics of the images.

4.1.3 Conclusions

Randomly changing the low level statistics of images during training of a CNN is not a new technique.

It has been first proposed by [75], which used a style transfer technique to randomly transfer painting

styles to ImageNet images, as described in section 2.5. This previous technique is successful in reducing

the texture bias of the fully trained CNN but it requires the use of a VGG16 network, a mirrored image

decoder and a style dataset to perform the style transfer. From this ensues a big computational overhead

during training, which might be undesirable.

Our technique, while it is highly inspired by the encoder-decoder architecture of the style transfer

technique, it uses much smaller networks and no style dataset. The style transfer technique needs a

big network because it needs to accurately capture style, which can contain ”medium-level” information.

Meanwhile, our technique is focused on generating the lowest level spatial-coherent information that is

possible. Furthermore, we search to generate all possible variations of this low-level information without

learning the styles from an inherently biased painting dataset. This is, in fact, possible with a very

simplistic architecture.

From this section, we conclude that our technique offers a significant reduction of the texture-bias of
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Figure 4.4: Comparison of Class-specific Texture Bias (CTB) between standard training and training
with textured images, averaged over three runs. Vertical bars represent one standard deviation from the
mean (triangles and squares).

convolutional neural networks in a classification task, with low computational overhead.

4.2 Domain Generalization in Semantic Segmentation

We test the Domain Generalization performance in the task of Semantic Segmentation of road scenes.

In this scenario, the network is trained on a single dataset with images from a simulated environment.

The network is then tested with images of a real environment. The vanilla training scheme usually

produces networks that perform well in the simulated environment but whose performance drops when

tested in the unseen real domain. The techniques with better generalization performance should be able

to perform better in the real environment.

As described in section 2.4.1, the task of Semantic Segmentation consists of attributing each pixel in

an image to the correct class label. In the context of road scene segmentation, this consists of labeling

the pixels that correspond to the road, cars, trucks, people, sidewalk, buildings, poles, traffic lights, traffic

signs, sky, and others.

4.2.1 Experiment Description

Datasets

We chose two training datasets and one testing dataset for this experiment.

The first training set is the GTA5 dataset [129], which includes 24966 densely annotated images of in-

game road scenes, with 19 different classes and a resolution 1914×1052. During training, the training and
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validation subsets, consisting of 18786 images, are used for training, and the testing subset, consisting

of the remaining 6180 images, is used for validation. The images are down-sampled to 1280 × 720

resolution due to GPU memory constraints. Textured examples of this dataset are displayed in Figure

4.5.

Figure 4.5: Examples from the GTA5 dataset with a random texturization applied. These images were
used for training the networks.

The second training dataset is the Synthia dataset [130], whose training subset includes 9000 images,

generated from a simulated city environment, with resolution 1280× 760. The testing subset, containing

400 images, is used for validation during training. The images are densely annotated with 13 classes,

compatible with those of the GTA5 dataset. Textured examples of this dataset are displayed in Figure

4.6.

Figure 4.6: Examples from the Synthia dataset with a random texturization applied. These images were
used for training the networks.

We chose the Cityscapes dataset [131] of real road scenes as a testing dataset due to its class

compatibility with with the other two training sets. Cityscapes includes 5000 frames of real road scene

images with pixel-level annotations and 20000 frames with coarse annotations. Only the finely annotated

images will be used for testing. The images have a resolution of 2048 × 1024 which is again down-

sampled to 1280 × 720 to keep the image scale of GTA5 and Synthia. The images are annotated with

30 different classes. The testing results are calculated only with respect to the classes that are common

between the training and testing datasets. An example of this dataset with labels is presented in Figure

4.9.
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Domain Randomizer Architecture

The architecture of the image texturization network is summarized in table 4.1.

Layer Channels In Channels Out Kernel Size Stride Padding Activation

Encoder C0 3 48 4× 4 4 2 Tanh

Encoder C1 48 192 4× 4 2 2 Tanh

Decoder TC0 192 48 4× 4 2 2 Tanh

Decoder TC1 48 3 4× 4 4 2 None

Table 4.1: Architecture of the Auto-Encoder for random texturization.

Instead of the KL divergence loss, an hyperbolic tangent (Tanh) activation is used to keep the feature

maps in the range of −1 to 1, guaranteeing the translation of the feature maps is comparable to their

variance.

A translation transformation is applied in between the encoder and decoder. The standard de-

viation of the 192 dimensional translation vector is set to a variable parameter σ and the standard

deviation of the noise tensor is also set to σ. The parameter σ controls the intensity of the trans-

formation and is varied to test different texturization strengths. The following values of σ are tested:

σ ∈ {0, 0.01, 0.03, 0.06, 0.1, 0.15, 0.22, 0.3}.

Furthermore, a decay parameter γ is used to reduce the strength of the texturization as the training

progresses, as a form of curriculum learning. This approach has been shown to produce good results

when using gaussian blur [132]. The decay parameter modulates the texturization strength throughout

training by updating it every 1000 iterations in the following manner:

σ ← σ(1− γ) (4.5)

Modulating the texturization strength with a decay parameter induces a shape bias in the early train-

ing stages. Slowly suppressing the domain shifts in the later phases then allows the network to fully

learn the statistics of original dataset, hopefully without losing the initial shape bias.

To simulate a real application scenario, the texturization network is trained in the same training

dataset on which the main network will be trained. The Pytorch’s default ADAM optimizer is used with a

learning rate of 1 × 10−4. The Auto-Encoder is trained for 5000 iterations and is frozen before the start

of the main training stage.

Network Architectures

Our technique is tested with two semantic segmentation architectures.

The first is a fully convolutional network (FCN-8s) architecture for semantic segmentation, described

in section 2.4.1. This architecture is implemented with a VGG16 backbone, upsampling 32 times the

features from the layer pool5, 16 times the features from layer pool4 and 8 times the features from

layer pool3. The full architecture is available at [133]. The backbone is initialized with the weights from

pre-training in ImageNet.
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The second architecture that was tested is the DeeplabV2 network with a pretrained ResNet-101

backbone, described in section 2.4.1. The full network implementation and weights are available at

[134].

Training Details

The main network is trained for 150000 iterations using a SGD optimizer with a learning rate of 2.5×10−4,

momentum of 0.9, and a weight decay of 5 × 10−4. The learning rate is updated during training with a

polynomial learning rate scheduler [135], which decays the learning rate to 0 at the end of training

using a power law. The batch size is set to 1 due to GPU memory limitations. The 150000 training

iterations equate to 7.98 epochs in GTA5 and 16.67 epochs in the Synthia dataset. The networks are

validated at the end of each epoch and the network with the best validation score is kept for testing. The

training datasets are augmented with colour jitter and random horizontal flipping, both standard data

augmentation techniques. The training implementation, with exception of the texturization network, is

based on [136].

Metrics

The networks are evaluated with the metrics described in section 2.4.1.

4.2.2 Results

We begin by showing the effect of changing the texturization strength on the different performance

metrics in Figure 4.7, during training, validation and testing.

(a) Training and Validation Phase (b) Testing Phase

Figure 4.7: Evolution of performance metrics with changing texturization strength. Training is done on the
GTA5 dataset and testing in the Cityscapes dataset. The semantic segmentation task is performed with a
FPN architecture and a VGG16 backbone. In (a), we show the training and validation metrics, evaluated
on the simulated GTA5 dataset. In (b) we show the testing scores on the real Cityscapes dataset, where
the full lines correspond to testing on the unchanged images and the dotted lines correspond to testing
on textured images, with a fixed texturization strength of σ = 0.2.
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Unlike the results of section 4.1.2, we notice in Figure 4.7 (b) that introducing progressively textured

images always decreases the generalization test scores of the network. This indicates that there is

no value in using this technique in this situation. This happens not only for the testing scores but for

the training and validation scores as well. Since the training and validation scores are relatively close

together, it is evident that no significant overfitting to the training set is occurring. On the contrary, the

fact that the training performance decreases with the texturization strength indicates that a substantial

amount of underfitting may be occurring. This is explained by the fact that the GTA5 dataset is al-

ready rather diverse. This fact, coupled to the use of further data augmentation techniques like random

horizontal flipping and color jitter, means that the full capacity of the network is already being utilised

successfully. Any further data augmentation technique will therefore saturate the learning capacity of the

network and it will start to underfit the texture information as well as the shape information. Moreover,

the testing performance on augmented images peaks at the same value as the testing in untouched im-

ages. From this observation we deduce that the network successfully became invariant to the low level

image statistics that are introduced by the texturization process. A simple extrapolation indicates that,

at a texturization strength of around σ = 0.5, the network would become so invariant to textures that the

simulated and real images would yield the same performance. This would happen when the validation

and testing scores are the same. Unfortunately, this level of texture invariance comes at the cost of a

big performance drop in either dataset. We thus conclude that texture invariance is very expensive in

terms of network learning capacity if it is obtained through data augmentation techniques. Other means

to render networks texture invariant might therefore be needed.

In the same experiment we also tested the effect of changing the value of the texturization decay

parameter γ at a fixed initial value for the texturization strength σ = 0.1. A low decay value leads to a

final texturization strength that is only a small percentage below the initial value. A high decay setting

leads to a final texturization strength that it is close to 0. Results are shown in Figure 4.8.

It is noticeable in Figure 4.8 (a) that, for larger decay settings the underfitting effect seems to disap-

pear. This is because, in the later training stages, the network has access to the original dataset statistics

and is able to fit it as best as possible. In fact, a marginal increase in performance is observed in the

validation scores when comparing Figure 4.7 (a) at σ = 0 and Figure 4.8 (a) at γ > 0.02. This means

that the early shape bias induced by the textured images improves the generalization performance in

the validation dataset.

For a fixed initial texturization strength σ = 0.1, we observe an optimal value for the decay at γ = 0.01.

This equates to a texturization strength of σ = 0.0022 at the end of the 150000 iterations (decay every

1000 iterations). This indicates that, when using this texturization technique, additionally using decay is

also beneficial. However, the baseline performance is still better than this optimal value, because the un-

derfitting problem is still present. For higher values of the decay, the texture bias phenomenon becomes

prominent and the generalization performance drops again. Lastly, and as expected, the generalization

performance in the augmented test images becomes worse when the texturization strength is reduced

throughout training because the network is less exposed to the augmented images during training.

We now compare the generalization performance between a network with standard training and a
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(a) Training and Validation Phase (b) Testing Phase

Figure 4.8: Evolution of performance metrics while changing the texturization decay parameter for a fixed
texturization strength of σ = 0.1. Training is done on the GTA5 dataset and testing in the Cityscapes
dataset. The semantic segmentation task is performed with a FPN architecture and a VGG16 backbone.
In (a), we show the training and validation metrics, evaluated on the simulated GTA5 dataset. In (b)
we show the testing scores on the real Cityscapes dataset, where the full lines correspond to testing
on the unchanged images and the dotted lines correspond to testing on textured images, with a fixed
texturization strength of σ = 0.2.

network trained with randomly textured images for a fixed texturization strength σ = 0.1. Table 4.2 shows

this comparison across classes for the two chosen architectures and the two chosen training datasets.

It is observed, as expected regarding the previous experiment, that the performance is deteriorated

when using our proposed technique. In particular, the Deeplab architecture with a ResNet101, which

is generally considered to perform better and be more capable than the VGG16-FCN, seems to be far

more affected by the use of textured images during training. This is consistent with the findings of [75],

which showed that more recent network architectures, with skip-connections and blocks with multiple

processing paths, tend to be more texture-biased than simple sequential architectures like VGG16.

It is also visible that training on the GTA5 dataset produces better results. This is due to the fact

that GTA5 is a more complete simulated environment than Synthia, with more realistic vehicles, people,

scenarios, textures, lighting, and overall detail. This shows that working on better computer graphics will

be fundamental to achieve a good adaptation from simulation to real.

An example of the segmentation maps produced on the Cityscapes dataset by the ResNet-101

architecture, trained on GTA5 with texturization, is displayed is displayed in Figure 4.9. The method

clearly produces unacceptable semantic maps that would be unusable in a self-driving scenario.

We notice that some important classes in an autonomous driving scenario, like road, vehicle and

person, have a particularly high degradation in performance. This means that the proposed technique

might not be suitable to this purpose.
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Training Dataset GTA5 Synthia

Architecture ResNet101 VGG16 ResNet101 VGG16

Data Augmentation V V+T V V+T V V+T V V+T

road 71.45 9.76 72.07 60.14 42.51 6.34 53.61 23.2

sidewalk 15.03 13.01 26.8 28.88 19.31 12.17 27.02 22.24

building 79.61 58.62 81.85 77.7 77.59 59.38 73.49 70.31

wall 15.06 0.08 24.56 21.13 1.1 0.1 5.12 0.24

fence 19.36 0.01 20.46 16.42 0.03 0.01 0.15 0.3

pole 29.72 12.76 19.43 14.25 26.35 11.63 23.62 17.34

traffic light 35.03 2.05 28.07 22.36 2.47 1.56 10.76 5.65

traffic sign 23.41 2.51 15.32 8.45 10.79 3.03 13.48 11.66

vegetation 80.09 43.79 80.92 78.09 75.29 44.54 78.94 74.09

terrain 70.1 0.0 35.71 33.32 0.0 0.0 0.0 0.0

sky 91.72 79.29 82.75 82.17 83.29 80.08 82.16 80.24

person 74.04 40.32 52.62 44.14 59.51 43.14 56.11 51.57

rider 37.65 4.37 16.94 17.46 23.22 3.56 21.73 19.67

car 89.84 34.62 80.52 41.11 45.61 35.72 55.76 20.61

truck 66.59 0.0 20.4 19.58 0.0 0.0 0.0 0.0

bus 51.35 0.67 17.57 15.72 17.74 0.57 17.34 14.69

train 1.78 0.0 2.78 3.64 0.0 0.0 0.0 0.0

motorbike 55.91 1.03 21.87 20.65 13.23 1.52 21.49 17.8

mIoU 38.4 16.7 37.1 32.1 27.9 16.5 29.7 23.6

Table 4.2: mIoU scores (%) on the Cityscapes testing dataset for different training datasets (GTA5 and
Synthia), different network architectures (DeeplabV2 with Resnet101 backbone and FCN with VGG16
backbone) and different training data augmentations (Vanilla (V) and Textured Images (T)).
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(a) Image (b) Ground truth segmentation

(c) Predicted segmentation

Figure 4.9: Example of semantic segmentation on the Cityscapes dataset, produced by a DeeplabV2
architecture with a ResNet-101 backbone, trained on the GTA5 dataset with texture augmentation.

4.2.3 Conclusions

After the success in reducing the texture bias in section 4.1, in the task of image classification, it was

thought that the domain generalization performance would increase also in other tasks. This section

shows that, once the task becomes more demanding, the networks are not capable of training in data

distributions that are highly augmented and still learn effectively. Thus, the generalization performance

on a previously unseen training dataset dramatically drops when the degree of data augmentation in-

creases.

Still, we showed that using this texturing technique in the early stages of training and then slowly

decaying it off brings a marginal increase in the validation scores (in-distribution performance). This

application to in-distribution learning may be object of future research but it is off the scope of this thesis,

whose main concern is out-of-distribution performance.

We then showed that more recent and efficient architectures like the ResNet101, tend to suffer more

in out-of-domain testing than previous parameter-heavy networks like the VGG16. This indicates that

efficient architectures might be more inclined to fit low-level textures information instead of high-level

shape information. Generally, architectures with a higher number of parameters, seem to be more

capable of learning domain invariance. The problem arises when the task becomes too difficult and

no standard network architecture is capable of learning this domain invariance. It is suspected that

this technique could work in networks that are largely oversized for the task, as was the case in the

classification task of the previous section. This becomes impracticable in a road scene segmentation

task. Future research should therefore seek novel ways to obtain domain invariance, through invariance

mechanisms that are introduced in the networks.
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4.3 Domain Generalization in Object Detection

In this section, we test the Domain Generalization performance in the task of Object Detection in road

scenes. The networks are trained to detect objects in images from a simulated environment and are

then tasked with identifying the same class of objects in images from real road scenes.

As described in section 2.4.2, the task of Object Detection consists of drawing a bounding box around

every instance of an object in a given picture and correctly identifying the class of the object. In the

context of road scene object detection, this can include the identification of any number of objects. In

this experiment we will reduce the task to simply finding the vehicles (cars, buses, trucks) in the image,

all under one single ”vehicle” class.

4.3.1 Experiment Description

Datasets

As a simulated training environment we chose the VirtualKITTI2 dataset [137]. This dataset consists of

5 driving sequences in a simulated city environment, each with 10 different camera angles and weather

conditions, totalling 42520 images with a resolution of 1242 × 375. The dataset was split with scene02

(4661 images) used for validation and the 4 remaining scenes used for training.

We chose the KITTI real road scene dataset as a testing set due to its compatibility with VirtualKITTI2.

This dataset contains 7481 images, with the same resolution as VIrtualKITTI2, in different real driving

scenarios.

Domain Randomizer Architecture

We use the same encoder and decoder that was described in section 3.2.2, in table 3.1. The Auto-

Encoder is trained on the MS-COCO dataset for 25000 iterations with a batch size of 16 and a learning

rate of 1× 10−4 with Pytorch’s default ADAM optimizer.

A translation transformation is applied in between the encoder and decoder. The standard deviation

of the 243 dimensional random translation vector is set to σ = 0.2 and the standard deviation of the noise

tensor is set to σ = 0.1.

Network Architecture

We test the DG performance using the Faster R-CNN object detection architecture described in section

2.4.2. We test this method with three different backbone architectures of differing capacities.

The first and second are a VGG11 and a VGG19 with Batch Normalization layers, as described in

section 2.3.1, using the default Pytorch implementation.

The third is a ResNet50 architecture, described in table 2.1, completed with a Feature Pyramid

Network (FPN) scheme, described in section 2.4.1. Once again, this is an instance of the default Pytorch

implementation.
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Training Details

The networks are trained in the simulated environment for 10 epochs, using Pytorch’s default ADAM

optimizer, with a batch size of 8 and an initial learning rate of 10−4. The learning rate is updated during

training with a step learning rate scheduler, which decays the learning rate exponentially, multiplying it

by 0.9 every epoch. Further, at the beginning of each epoch, a warm up scheme is used to ramp up the

learning rate from 0 to its desired value over the first 1000 iterations. After each epoch, the networks

are evaluated on the validation subset. The network with the best validation score (mAP@ 0.5 IoU) is

kept for testing. In the baseline scenario there is no data augmentation procedure. The implementation

follows [138].

Metrics

The networks are evaluated with the metrics described in section 2.4.2. They are implemented using

the COCO evaluator [139]. This evaluator calculates the mean Average Precision (mAP) and the mean

Average Recall (mAR) over all classes, over 101 linearly spaced values of confidence between 0 and 1,

and over different ranges of IoU. The range of IoU 0.50 : 0.95 indicates that the scores are averaged over

IoU values starting from 0.50, in increments of 0.05 until 0.95.

The metrics are filtered at different object sizes, small area (between 40 and 1024 (32 × 32) pixels),

medium area (between 1024 and 9216 (96 × 96) pixels) and large area (larger than 9216 pixels). They

are also filtered at different maximum number of detections per image (MaxDets).

4.3.2 Results

We show the results of the COCO evaluation procedure in table 4.3, for the two chosen architectures,

trained with and without the random texturization module.

Similarly to the results of the Semantic Segmentation experiments, introducing random textures to

the images in an Object Detection task does not improve the overall performance of the networks. Both

architectures seem to suffer more significantly for objects with a Small and Medium area (less than 96

pixels of height and/or width). This indicates that our texturization method destroys important information

at small image scales. A marginal increase in performance is observed in objects of Large area. This

method could therefore be useful in in a scenario where we only need to detect large objects or objects

that are close-by.

Analysing the mF1 scores, we notice once again that the decrease in performance is larger for the

ResNet architecture than it is for the VGG architectures, even though the ResNet performs better over

all. Once more, this suggests that older simpler architectures may be more capable of learning domain

invariance due to the higher number of parameters.

Comparing the VGG11 and VGG19 shows that simply increasing the size of the network is enough

to achieve better performance in general but training in textured images affects them both equally.
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Metric IoU Area MaxDets
VGG11 VGG19 ResNet50-FPN

N T N T N T

mAP

0.50 : 0.95 All 100 0.341 0.326 0.410 0.386 0.434 0.380

0.50 All 100 0.654 0.625 0.704 0.682 0.725 0.669

0.75 All 100 0.328 0.306 0.433 0.395 0.465 0.385

0.50 : 0.95 Small 100 0.115 0.070 0.170 0.140 0.245 0.170

0.50 : 0.95 Medium 100 0.333 0.307 0.413 0.368 0.440 0.358

0.50 : 0.95 Large 100 0.479 0.498 0.525 0.546 0.541 0.538

mAR

0.50 : 0.95 All 1 0.120 0.116 0.133 0.128 0.137 0.127

0.50 : 0.95 All 10 0.383 0.369 0.449 0.429 0.476 0.428

0.50 : 0.95 All 100 0.391 0.391 0.465 0.443 0.499 0.450

0.50 : 0.95 Small 100 0.160 0.129 0.266 0.199 0.344 0.260

0.50 : 0.95 Medium 100 0.386 0.377 0.469 0.432 0.500 0.431

0.50 : 0.95 Large 100 0.529 0.561 0.568 0.598 0.584 0.590

mF1 0.50 : 0.95 All 100 0,364 0,356 0.436 0.413 0,464 0,412

Table 4.3: Mean Average Precision (mAP) and mean Average Recall (mAR) in the VirtualKITTI2 to KITTI
Object Detection task, for two different backbone architectures and two different data augmentation
strategies (None (N) and Textured Images (T)). Mean F1 score (mF1) calculated directly from the mAP
and mAR according to mF1 = 2(mAP ·mAR)/(mAP +mAR).

4.3.3 Conclusions

The results of this experiment show that our technique alters images in a way that prevents the networks

from learning useful representations of objects of small sizes. The marginal increase in performance for

bigger objects suggests that, in fact, changing the textural information of images aids in generalization,

but only when the scale of the objects is at least one order of magnitude larger than the characteristic

length of the texture (periodicity). The network is not able to learn useful representations of small objects

because the texturing of the image with our process obfuscates this small-scale information.

The results of the Domain Generalization experiments in both the Semantic Segmentation and Ob-

ject Detection tasks reveal that these tasks do not benefit from an extreme data augmentation strategy.

Expanding the domain of the training images leads to a severe amount of underfitting, which is char-

acterized by a significant reduction in performance on the training set as well as on the validation and

testing sets. This indicates that learning texture-invariant representations requires a significant invest-

ment of learning capacity by the network. Thus, a big increase in network capacity would be necessary

to effectively learn using this data augmentation technique. This is obviously not the ideal solution to this

problem. A better solution should seek to integrate invariance mechanisms within the network architec-

ture itself. Such mechanisms would allow the network to ignore textural information without investing a

significant amount of learning capacity. This way, our random domain shifting technique could be applied

without the need to increase the network size.
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Chapter 5

Conclusions

We arrive at the end of this thesis. This chapter will summarize our results and delineate possible future

research avenues in the topics that were discussed throughout this work.

5.1 Achievements

In the introductory chapter of this thesis we set out to offer the reader a comprehensive look into the

fundamentals of CNNs, their functioning, their applications and the generalization problems that they

suffer from. In the background chapter, all these topics were covered in appropriate detail and a strong

theoretical basis was established.

In chapter 3 we explored different domain shifting methods. Until now, image domain augmentation

used to be performed either with simple transformations like image translations, rotations, scalling, ad-

ditive noise, other kinds of noise, or with more computationally expensive techniques like style transfer.

We first tried generalizing the AdaIN based style transfer method to work without a style dataset, this

method generated images that had different textures but the diversity of those textures did not justify

the computational resources required just to run the data augmentation process. This thesis proposes

a novel technique for randomly altering the texture of an image. This technique is simpler and performs

data augmentation in a manner that is very suited CNNs, bringing only a small computational overhead.

In chapter 4 we showed that the proposed technique successfully renders CNNs less texture-biased

in a classification task with mixed textural and shape cues. We then tested our method in more demand-

ing scenarios. The semantic segmentation experiments in domain generalization from a simulated world

to a real world revealed that introducing our data augmentation technique during training leads to severe

underfitting. This shows that CNN architectures do not have good and efficient mechanisms to filter out

textural information. In an object detection scenario the same phenomenon was observed. Interestingly,

the technique was shown to work for large object instances but the performance in smaller detections

remained severely affected.

The final conclusion is that the proposed data augmentation technique, although it renders CNNs

less texture-biased, it does not help their domain generalization performance due to an underfitting
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phenomenon.

5.2 Future Work and Discussion

Two future major research lines were identified throughout this thesis. The first is related to the proposed

image texturization technique itself. The second is related to the architectural design of the networks

that perform the actual tasks.

The proposed technique tackles the problem of maximally expanding the domain of possible textures

in images with a tile-based approach. This tile-based approach generates textures that are therefore

periodic in nature. Introducing a noise component across space reduces this periodicity but it does not

eliminate it. All generated textures still have a strong grid-like appearance with a periodicity defined by

the convolutional auto-encoder architecture. Further work on this technique could seek to generalize

it to non-periodic textures. A possible future technique would be a middle-ground between the ETD

architecture and the AdaIN-based style transfer architecture. Key requisites to maintain would be the

nonexistence of an information bottleneck in the auto-encoder, so that images can be reconstructed

with fidelity, and the possibility to generate every possible texture within a certain ”texture complexity”

limit. This texture ”complexity” could be defined as a certain length over which a certain set of textural

features are repeated. A more formal approach to define the space of all possible textures would be to

explore other regular or semi-regular tilling schemes. This would generate textures that have different

translational invariances and other symmetries.

Other possibility to enhance this technique would be to study how different auto-encoder architec-

tures, with different depths, periodicity and kernel sizes would affect the texture generation and the

generalization performance of the main networks. It is entirely possible that adapting the architecture of

the auto-encoder to the architecture of the main network could prove to be more efficient than choosing

any auto-encoder architecture with no further considerations. This approach was not tested in this work

because it was considered that the architecture of the main network played a bigger role. After all, if a

network is truly texture-invariant, it should be invariant to any texturization scheme.

This avenue might be interesting from a pure research point of view but it would serve no purpose to

solve the actual problem at hand until we are able to construct networks that are able to filter out textural

information without an increase in size. This constitutes the second possible avenue for future research.

One area of research that is still very underdeveloped is the fundamentals of how CNN’s learn. There

is no formal theory and very few useful theoretical results about the properties of CNNs during training

and testing. Most computer vision research and state-of-the-art algorithms are based on empirical re-

sults, rules-of-thumb, intuition and the combination of previous techniques into a new one. This approach

has produced enormous advances in performance but it has left the research community with no tools

to analyse the behaviour of such architectures. Some explainability tools exist for CNNs [72, 140, 141],

mostly based on the back-propagation of the gradient of the predictions with respect to the image pixels.

this creates interpretable heat maps that allow humans to understand what parts of the image are used

to produce the prediction. Still these techniques are very limited in their explanations and they do not

80



show the reasoning behind a decision. Furthermore, some of these techniques fail some basic sanity

checks [142], such as producing convincing explanations from models with randomly altered weights.

Some results in network robustness exist for specific architectures, such as k-Lipschitz networks, which

formally guarantee robustness to local perturbations and some generalization bounds [143], but do not

have any guarantee in out-of-domain robustness. The problems of Domain Generalization and con-

trolling the Texture-Bias of CNNs are therefore devoid of any mathematical analysis tool. A first step to

totally solve these problems thus requires the development of the mathematical tools that would allow us

to make informed decisions with regards to network design, data augmentation and training schemes.

Until these tools are developed, the research community should keep producing better and better

techniques, incrementally, based on previous work, and with a pinch of intuition and creativity. This

process is time consuming, with many failed techniques but it has worked until now.

Possible techniques that may increase the generalization performance of networks and render them

more shape-biased include the use of batch normalization or instance normalization to remove global

textural information from the internal representations of the CNNs. These techniques have already been

shown to substantially increase the generalization performance of CNNs [53] and the fact that instance

normalization is used for fast style transfer indicates that this technique truly targets textural information

but not shape information. These techniques eliminate global information at each layer of the networks.

An improvement to Instance Normalization could perform a local normalization that eliminates textural

information differently on different segments of the feature maps. This could eliminate textural informa-

tion in a per-object basis at the deepest layers of the CNN. The information that is kept at the last layers

would therefore be fully based on the shapes present in the images. The nature of this local normaliza-

tion scheme is still undefined. One would intuitively think that the scale of the map segments where the

features are normalized should start at a small value, in the low-level layers of the network, and progres-

sively increase so that higher-level textural information is sequentially filtered out. Another option to filter

out textural information would be to use a high-pass filter in the feature maps, using gaussian kernel

convolutions. Instance Normalization can be though of as a high-pass filter that only filters out the first

frequency component of the feature maps, which is the average activation, and normalizes the energy of

all others. A high-pass filter is therefore a generalization of an instance normalization layer. Still, textural

information can be useful to perform a certain task. One could imagine a network architecture where

textural information and content information are processed through different pathways. The possibility of

disentangling textural and content information with a local instance normalization type approach could

open many doors to built better generalizing networks and even more explainable networks.

Another option to create more shape-biased networks would be a change in the nature of the convo-

lutional layers. A convolution kernel is multiplied pixel-per-pixel with the feature maps at each position.

The learned weights control how much of each pixel in the grid passes to the next layer. This grid-like

processing of images may be picking up unnecessary pixel-level noise. An alternative would be to use

sparse kernels, where the positions at which each value is sampled are also learneable parameters

of the network. This would require a form of differentiable indexing, which can be achieved with an

interpolation of the feature maps. This would introduce a considerable computational overhead during
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training but once the final kernel positions are chosen, the number of floating point operations during

inference would remain the same. This technique results in convolutional operations that can capture

relationships between faraway regions of the image, even at the early layers of the network. In fact, the

first layers of a CNN are the most computationally intensive due to the large resolution of the feature

maps, so this technique could drastically decrease the amount of computation to achieve similar results.

Since the positions of the weights on the feature maps are learned parameters, the network should be

able to more efficiently learn complex shape representations and be able to capture texture information

just as well, when needed.

A final idea to construct networks that rely more on the content of images rather than texture is to do

away with convolutions all together. Convolutions severely constrain the invariances that a network can

learn. The grid-based translation of the kernels is a great approach to achieve translational invariance

but it fails, for instance, to achieve rotational invariance. The previous approach of varying the positions

where the image is sampled with differentiable indexing can be re-utilized in a different manner. Instead

of learning the kernel weights and sampling positions, and performing a convolution with the learned

sparse kernel, this new technique would only learn the kernel weights, and adapt the sampling positions

at inference time. This would give the networks a much bigger set of invariances, to translation, rotation,

scalling, other affine transformations, and even other non-linear geometrical distortions. This would

make the learning of high-level features much more efficient. During inference, the sampling positions

are adapted using an optimization procedure that tries to maximize a certain objective. In classification,

this objective could be the maximization of the confidence in the predictions, until one of them is selected

and maximized. This procedure is expensive during inference and might not be robust. It might also be

very difficult to train this kind of algorithm. However, if these challenges are resolved, an adaptive

algorithm in this fashion would be very close to the actual way in which humans and animals process

visual information.
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